11,282 research outputs found

    Structure of Dark Matter Halos From Hierarchical Clustering

    Full text link
    We investigate the structure of the dark matter halo formed in the cold dark matter scenario using NN-body simulations. We simulated 12 halos with the mass of 6.6×1011M⊙6.6\times 10^{11}M_{\odot} to 8.0×1014M⊙8.0\times 10^{14}M_{\odot}. In almost all runs, the halos have density cusps proportional to r−1.5r^{-1.5} developed at the center, which is consistent with the results of recent high-resolution calculations. The density structure evolves in a self-similar way, and is universal in the sense that it is independent of the halo mass and initial random realization of density fluctuation. The density profile is in good agreement with the profile proposed by Moore et al. (1999), which has central slope proportional to r−1.5r^{-1.5} and outer slope proportional to r−3r^{-3}. The halo grows through repeated accretion of diffuse smaller halos. We argue that the cusp is understood as a convergence slope for the accretion of tidally disrupted matter.Comment: 34 including 23 figures, revised version, accepted for publication in Ap

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    A new code for orbit analysis and Schwarzschild modelling of triaxial stellar systems

    Full text link
    We review the methods used to study the orbital structure and chaotic properties of various galactic models and to construct self-consistent equilibrium solutions by Schwarzschild's orbit superposition technique. These methods are implemented in a new publicly available software tool, SMILE, which is intended to be a convenient and interactive instrument for studying a variety of 2D and 3D models, including arbitrary potentials represented by a basis-set expansion, a spherical-harmonic expansion with coefficients being smooth functions of radius (splines), or a set of fixed point masses. We also propose two new variants of Schwarzschild modelling, in which the density of each orbit is represented by the coefficients of the basis-set or spline spherical-harmonic expansion, and the orbit weights are assigned in such a way as to reproduce the coefficients of the underlying density model. We explore the accuracy of these general-purpose potential expansions and show that they may be efficiently used to approximate a wide range of analytic density models and serve as smooth representations of discrete particle sets (e.g. snapshots from an N-body simulation), for instance, for the purpose of orbit analysis of the snapshot. For the variants of Schwarzschild modelling, we use two test cases - a triaxial Dehnen model containing a central black hole, and a model re-created from an N-body snapshot obtained by a cold collapse. These tests demonstrate that all modelling approaches are capable of creating equilibrium models.Comment: MNRAS, 24 pages, 18 figures. Software is available at http://td.lpi.ru/~eugvas/smile
    • …
    corecore