2,074 research outputs found

    Polar Codes with Dynamic Frozen Symbols and Their Decoding by Directed Search

    Full text link
    A novel construction of polar codes with dynamic frozen symbols is proposed. The proposed codes are subcodes of extended BCH codes, which ensure sufficiently high minimum distance. Furthermore, a decoding algorithm is proposed, which employs estimates of the not-yet-processed bit channel error probabilities to perform directed search in code tree, reducing thus the total number of iterations.Comment: Accepted to ITW201

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    A STUDY OF ERASURE CORRECTING CODES

    Get PDF
    This work focus on erasure codes, particularly those that of high performance, and the related decoding algorithms, especially with low computational complexity. The work is composed of different pieces, but the main components are developed within the following two main themes. Ideas of message passing are applied to solve the erasures after the transmission. Efficient matrix-representation of the belief propagation (BP) decoding algorithm on the BEG is introduced as the recovery algorithm. Gallager's bit-flipping algorithm are further developed into the guess and multi-guess algorithms especially for the application to recover the unsolved erasures after the recovery algorithm. A novel maximum-likelihood decoding algorithm, the In-place algorithm, is proposed with a reduced computational complexity. A further study on the marginal number of correctable erasures by the In-place algoritinn determines a lower bound of the average number of correctable erasures. Following the spirit in search of the most likable codeword based on the received vector, we propose a new branch-evaluation- search-on-the-code-tree (BESOT) algorithm, which is powerful enough to approach the ML performance for all linear block codes. To maximise the recovery capability of the In-place algorithm in network transmissions, we propose the product packetisation structure to reconcile the computational complexity of the In-place algorithm. Combined with the proposed product packetisation structure, the computational complexity is less than the quadratic complexity bound. We then extend this to application of the Rayleigh fading channel to solve the errors and erasures. By concatenating an outer code, such as BCH codes, the product-packetised RS codes have the performance of the hard-decision In-place algorithm significantly better than that of the soft-decision iterative algorithms on optimally designed LDPC codes

    Gurafikaru moderujo no kakuritsu suiron to tsushinro fukugo mondai e no oyo ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3279号 ; 学位の種類:博士(理学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新558
    corecore