9,568 research outputs found

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Intelligent management experience on efficient electric power system

    Get PDF
    Electric power system is one of the most critical and strategic infrastructures of industrial societies. Nowadays, it is necessary the modernization and automation of the electric power grid to increase energy efficiency, reduce emissions, and transit to renewable energy. Power utilities face the challenge of using information and communication networks more effectively to manage the demand, generation, transmission, and distribution of their commodity services. Communication network constitutes the core of the electric system automation applications, the design of a cost-effective, and reliable network architecture is crucial. To resolve this difficulty in this work we study the integration of advanced artificial intelligence technology into existing network management system. This work focuses on an intelligent framework and a language for formalizing knowledge management descriptions and combining them with existing OSI management model. We have normalized the knowledge management base necessary to manage the current resources in the telecommunication networks. Intelligent agents learn the normal behaviour of each measurement variable and combine the intelligent knowledge for the management of the network resources. We present an analysis of corporate network management requirements and technologies, together with our implementation experience with the development of an integrated management system for a company network

    Tracking the stochastic growth of bacterial populations in microfluidic droplets

    Get PDF
    Bacterial growth in microfluidic droplets is relevant in biotechnology, in microbial ecology, and in understanding stochastic population dynamics in small populations. However, it has proved challenging to automate measurement of absolute bacterial numbers within droplets, forcing the use of proxy measures for population size. Here we present a microfluidic device and imaging protocol that allows high-resolution imaging of thousands of droplets, such that individual bacteria stay in the focal plane and can be counted automatically. Using this approach, we track the stochastic growth of hundreds of replicate Escherichia coli populations within droplets. We find that, for early times, the statistics of the growth trajectories obey the predictions of the Bellman-Harris model, in which there is no inheritance of division time. Our approach should allow further testing of models for stochastic growth dynamics, as well as contributing to broader applications of droplet-based bacterial culture

    Overlay networks for smart grids

    Get PDF
    • …
    corecore