18 research outputs found

    Soft-decision Star-QAM aided BICM-ID

    No full text
    Differentially detected non-coherent Star Quadrature Amplitude Modulation (Star-QAM) is deal for low-complexity wireless communications, since it dispenses with high-complexity channel estimation. We conceive soft-decision based demodulation for 16-level Star-QAM (16-StQAM), which is then invoked for iterative detection aided Bit-Interleaved Coded Modulation (BICM-ID). It is shown that the proposed 16-StQAM based BICM-ID scheme achieves a coding gain of approximately 14 dBs in comparison to the 16-level identical-throughput Differential Phase-Shift Keying (16DPSK) assisted BICM scheme at a bit error ratio of 10-6

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM

    No full text
    Low-complexity non-coherently detected Differential Amplitude and Phase-Shift Keying (DAPSK) schemes constitute an ideal candidate for wireless communications. In this paper, we derive the soft-output probability formulas required for the soft-decision based demodulation of DAPSK, which are then invoked for Turbo Coded (TC) transmissions. Furthermore, the achievable throughput characteristics of the family of M-ary DAPSK schemes are provided. It is shown that the proposed 4-ring based TC assisted 64-ary DAPSK scheme achieves a coding gain of about 4.2 dBs in comparison to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme at a bit error ratio of 10?5

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM for Amplify-and-Forward based Cooperative Communications

    No full text
    Multilevel Differential Amplitude and Phase-Shift Keying (DAPSK) schemes do not require any channel estimation, which results in low complexity. In this treatise we derive the soft-output probability formulas required for a soft-decision based demodulation of high-order DAPSK, in order to facilitate iterative detection by exchanging extrinsic information with an outer Turbo Code (TC). Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. Compared to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme, the 4-ring based TC assisted 64-ary DAPSK arrangement has a power-efficiency improvement of 2.3 dB at a bit error rate (BER) of 10-5 . Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. More specifically, when using a TC block length of 400 modulated symbols, the 64 DAPSK (4, 16) scheme is 7.56 dB away from its capacity curve, while it had a reduced gap as low as 2.25 dB, when using a longer TC block length of 40 000 modulated symbols. Finally, as a novel application example, the soft-decision M-DAPSK scheme was incorporated into an Amplify-and-Forward (AF) based cooperative communication system, which attains another 4.5 dB SNR improvement for a TC block length of 40 000 modulated symbols

    Turbo-Coded Adaptive Modulation Versus Space-Time Trellis Codes for Transmission over Dispersive Channels

    No full text
    Decision feedback equalizer (DFE)-aided turbocoded wideband adaptive quadrature amplitude modulation (AQAM) is proposed, which is capable of combating the temporal channel quality variation of fading channels. A procedure is suggested for determining the AQAM switching thresholds and the specific turbo-coding rates capable of maintaining the target bit-error rate while aiming for achieving a highly effective bits per symbol throughput. As a design alternative, we also employ multiple-input/multiple-output DFE-aided space–time trellis codes, which benefit from transmit diversity and hence reduce the temporal channel quality fluctuations. The performance of both systems is characterized and compared when communicating over the COST 207 typical urban wideband fading channel. It was found that the turbo-coded AQAM scheme outperforms the two-transmitter space–time trellis coded system employing two receivers; although, its performance is inferior to the space–time trellis coded arrangement employing three receivers. Index Terms—Coded adaptive modulation, dispersive channels, space–time trellis codes

    Reduced-complexity non-coherent soft-decision-aided DAPSK dispensing with channel estimation

    No full text
    Differential Amplitude Phase Shift Keying (DAPSK), which is also known as star-shaped QAM has implementational advantages not only due to dispensing with channel estimation, but also as a benefit of its low signal detection complexity. It is widely recognized that separately detecting the amplitude and the phase of a received DAPSK symbol exhibits a lower complexity than jointly detecting the two terms. However, since the amplitude and the phase of a DAPSK symbol are affected by the correlated magnitude fading and phase-rotations, detecting the two terms completely independently results in a performance loss, which is especially significant for soft-decision-aided DAPSK detectors relying on multiple receive antennas. Therefore, in this contribution, we propose a new soft-decision-aided DAPSK detection method, which achieves the optimum DAPSK detection capability at a substantially reduced detection complexity. More specifically, we link each a priori soft input bit to a specific part of the channel's output, so that only a reduced subset of the DAPSK constellation points has to be evaluated by the soft DAPSK detector. Our simulation results demonstrate that the proposed soft DAPSK detector exhibits a lower detection complexity than that of independently detecting the amplitude and the phase, while the optimal performance of DAPSK detection is retained

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    Turbo-Coded Adaptive Modulation Versus Space–Time Trellis Codes for Transmission Over Dispersive Channels

    Full text link

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput
    corecore