1,684 research outputs found

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    A Hybrid Clustering-Fusion Methodology for Land Subsidence Estimation

    Get PDF
    A hybrid clustering-fusion methodology is developed in this study that employs Genetic Algorithm (GA) optimization method, k-means method, and several soft computing (SC) models to better estimate land subsidence. Estimation of land subsidence is important in planning and management of groundwater resources to prevent associated catastrophic damages. Methods such as the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) can be used to estimate the subsidence rate, but PS-InSAR does not offer the required efficiency and accuracy in noisy pixels (obtained from remote sensing). Alternatively, a fusion-based methodology can be used to estimate subsidence rate, which offers a superior accuracy as opposed to the traditionally used methods. In the proposed methodology, five SC methods are employed with hydrogeological forcing of frequency and thickness of fine-grained sediments, groundwater depth, water level decline, transmissivity and storage coefficient, and output of land subsidence rate. Results of individual SC models are then fused to render more accurate land subsidence rate in noisy pixels, for which PS-InSAR cannot be effective. We first extract 14,392 different input-output patterns from PS-InSAR technique for our study area in Tehran province, Iran. Then, k-means method is used to divide the study area to homogenous zones with similar features. The five SC models include Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Regression (SVR), Multi-Layer Perceptron (MLP) neural network and two optimized models, namely, Radial Basis Function (RBF) and Generalized Regression Neural Network (GRNN). To fuse individual SC models, three methods including Genetic Algorithm (GA), K-Nearest Neighbors (KNN) and Ordered Weighted Average (OWA) based on ORNESS method and ORLIKE method, are developed and evaluated. Results show that the fusion-based method is significantly superior to each of the employed individual methods in predicting land subsidence rate

    Recent development in electronic nose data processing for beef quality assessment

    Get PDF
    Beef is kind of perishable food that easily to decay. Hence, a rapid system for beef quality assessment is needed to guarantee the quality of beef. In the last few years, electronic nose (e-nose) is developed for beef spoilage detection. In this paper, we discuss the challenges of e-nose application to beef quality assessment, especially in e-nose data processing. We also provide a summary of our previous studies that explains several methods to deal with gas sensor noise, sensor array optimization problem, beef quality classification, and prediction of the microbial population in beef sample. This paper might be useful for researchers and practitioners to understand the challenges and methods of e-nose data processing for beef quality assessment

    Data-Driven Machine Learning for Fault Detection and Diagnosis in Nuclear Power Plants: A Review

    Get PDF
    Data-driven machine learning (DDML) methods for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP) are of emerging interest in the recent years. However, there still lacks research on comprehensive reviewing the state-of-the-art progress on the DDML for the FDD in the NPP. In this review, the classifications, principles, and characteristics of the DDML are firstly introduced, which include the supervised learning type, unsupervised learning type, and so on. Then, the latest applications of the DDML for the FDD, which consist of the reactor system, reactor component, and reactor condition monitoring are illustrated, which can better predict the NPP behaviors. Lastly, the future development of the DDML for the FDD in the NPP is concluded

    Radial-Basis-Function-Network-Based Prediction of Performance and Emission Characteristics in a Bio Diesel Engine Run on WCO Ester

    Get PDF
    Radial basis function neural networks (RBFNNs), which is a relatively new class of neural networks, have been investigated for their applicability for prediction of performance and emission characteristics of a diesel engine fuelled with waste cooking oil (WCO). The RBF networks were trained using the experimental data, where in load percentage, compression ratio, blend percentage, injection timing, and injection pressure were taken as the input parameters, and brake thermal efficiency (BTE), brake specific energy consumption (BSEC), exhaust gas temperature (T[subscript exh]), and engine emissions were used as the output parameters. The number of RBF centers was selected randomly. The network was initially trained using variable width values for the RBF units using a heuristic and then was trained by using fixed width values. Studies showed that RBFNN predicted results matched well with the experimental results over a wide range of operating conditions. Prediction accuracy for all the output parameters was above 90% in case of performance parameters and above 70% in case of emission parameters

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications
    corecore