671 research outputs found

    A Compositional Framework for Preference-Aware Agents

    Get PDF
    A formal description of a Cyber-Physical system should include a rigorous specification of the computational and physical components involved, as well as their interaction. Such a description, thus, lends itself to a compositional model where every module in the model specifies the behavior of a (computational or physical) component or the interaction between different components. We propose a framework based on Soft Constraint Automata that facilitates the component-wise description of such systems and includes the tools necessary to compose subsystems in a meaningful way, to yield a description of the entire system. Most importantly, Soft Constraint Automata allow the description and composition of components' preferences as well as environmental constraints in a uniform fashion. We illustrate the utility of our framework using a detailed description of a patrolling robot, while highlighting methods of composition as well as possible techniques to employ them.Comment: In Proceedings V2CPS-16, arXiv:1612.0402

    Tensor products and regularity properties of Cuntz semigroups

    Full text link
    The Cuntz semigroup of a C*-algebra is an important invariant in the structure and classification theory of C*-algebras. It captures more information than K-theory but is often more delicate to handle. We systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C*-algebra AA, its (concrete) Cuntz semigroup Cu(A)Cu(A) is an object in the category CuCu of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, we will call the latter CuCu-semigroups. We establish the existence of tensor products in the category CuCu and study the basic properties of this construction. We show that CuCu is a symmetric, monoidal category and relate Cu(A⊗B)Cu(A\otimes B) with Cu(A)⊗CuCu(B)Cu(A)\otimes_{Cu}Cu(B) for certain classes of C*-algebras. As a main tool for our approach we introduce the category WW of pre-completed Cuntz semigroups. We show that CuCu is a full, reflective subcategory of WW. One can then easily deduce properties of CuCu from respective properties of WW, e.g. the existence of tensor products and inductive limits. The advantage is that constructions in WW are much easier since the objects are purely algebraic. We also develop a theory of CuCu-semirings and their semimodules. The Cuntz semigroup of a strongly self-absorbing C*-algebra has a natural product giving it the structure of a CuCu-semiring. We give explicit characterizations of CuCu-semimodules over such CuCu-semirings. For instance, we show that a CuCu-semigroup SS tensorially absorbs the CuCu-semiring of the Jiang-Su algebra if and only if SS is almost unperforated and almost divisible, thus establishing a semigroup version of the Toms-Winter conjecture.Comment: 195 pages; revised version; several proofs streamlined; some results corrected, in particular added 5.2.3-5.2.

    Soft constraint abstraction based on semiring homomorphism

    Get PDF
    The semiring-based constraint satisfaction problems (semiring CSPs), proposed by Bistarelli, Montanari and Rossi \cite{BMR97}, is a very general framework of soft constraints. In this paper we propose an abstraction scheme for soft constraints that uses semiring homomorphism. To find optimal solutions of the concrete problem, the idea is, first working in the abstract problem and finding its optimal solutions, then using them to solve the concrete problem. In particular, we show that a mapping preserves optimal solutions if and only if it is an order-reflecting semiring homomorphism. Moreover, for a semiring homomorphism α\alpha and a problem PP over SS, if tt is optimal in α(P)\alpha(P), then there is an optimal solution tˉ\bar{t} of PP such that tˉ\bar{t} has the same value as tt in α(P)\alpha(P).Comment: 18 pages, 1 figur
    • …
    corecore