1,339 research outputs found

    Design Criteria of Soft Exogloves for Hand Rehabilitation- Assistance Tasks

    Get PDF
    This paper establishes design criteria for soft exogloves (SEG) to be used as rehabilitation or assistance devices. This research consists in identifying, selecting, and grouping SEG features based on the analysis of 91 systems that have been proposed during the last decade. Thus, function, mobility, and usability criteria are defined and explicitly discussed to highlight SEG design guidelines. Additionally, this study provides a detailed description of each system that was analysed including application, functional task, palm design, actuation type, assistance mode, degrees of freedom (DOF), target fingers, motions, material, weight, force, pressure (only for fluids), control strategy, and assessment. Such characteristics have been reported according to specific design methodologies and operating principles. Technological trends are contemplated in this contribution with emphasis on SEG design opportunity areas. In this review, suggestions, limitations, and implications are also discussed in order to enhance future SEG developments aimed at stroke survivors or people with hand disabilities

    Geometry-based customization of bending modalities for 3D-printed soft pneumatic actuators

    Get PDF
    In this work, we propose a novel type of 3D-printed soft pneumatic actuator that allows geometry-based customization of bending modalities. While motion in the 3D-space has been achieved for several types of soft actuators, only 2D-bending has been previously modelled and characterized within the scope of 3D-printed soft pneumatic actuators. We developed the first type of 3D-printed soft pneumatic actuator which, by means of the unique feature of customizable cubes at an angle with the longitudinal axis of the structure, is capable of helical motion. Thus, we characterize its mechanical behavior and formulate mathematical and FEA models to validate the experimental results. Variation to the pattern of the inclination angle along the actuator is then demonstrated to allow for complex 3D-bending modalities and the main applications in the fields of object manipulation and wearable robotics are finally discussed

    Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement

    Full text link
    BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate

    Supernumerary Robotic Fingers as a Therapeutic Device for Hemiparetic Patients

    Get PDF
    Patients with hemiparesis often have limited functionality in the left or right hand. The standard therapeutic approach requires the patient to attempt to make use of the weak hand even though it is not functionally capable, which can result in feelings of frustration. Furthermore, hemiparetic patients also face challenges in completing many bimanual tasks, for example walker manipulation, that are critical to patients’ independence and quality of life. A prototype therapeutic device with two supernumerary robotic fingers was used to determine if robotic fingers could functionally assist a human in the performance of bimanual tasks by observing the pose of the healthy hand. Specific focus was placed on the identification of a straightforward control routine which would allow a patient to carry out simple manipulation tasks with some intermittent input from a therapist. Part of this routine involved allowing a patient to switch between active and inactive monitoring of hand position, resulting in additional manipulation capabilities. The prototype successfully enabled a test subject to complete various bimanual tasks using the robotic fingers in place of normal hand motions. From these results, it is clear that the device could allow a hemiparetic patient to complete tasks which would previously have been impossible to perform

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level
    • …
    corecore