1,505 research outputs found

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstract—This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Terms—Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart

    Self-concatenated coding and multi-functional MIMO aided H.264 video telephony

    No full text
    Abstract— Robust video transmission using iteratively detected Self-Concatenated Coding (SCC), multi-dimensional Sphere Packing (SP) modulation and Layered Steered Space-Time Coding (LSSTC) is proposed for H.264 coded video transmission over correlated Rayleigh fading channels. The self-concatenated convolutional coding (SECCC) scheme is composed of a Recursive Systematic Convolutional (RSC) code and an interleaver, which is used to randomise the extrinsic information exchanged between the self-concatenated constituent RSC codes. Additionally, a puncturer is employed for improving the achievable bandwidth efficiency. The convergence behaviour of the MIMO transceiver advocated is investigated with the aid of Extrinsic Information Transfer (EXIT) charts. The proposed system exhibits an Eb /N0 gain of about 9 dB at the PSNR degradation point of 1 dB in comparison to the identical-rate benchmarker scheme

    Iterative Multiuser Minimum Symbol Error Rate Beamforming Aided QAM Receiver

    No full text
    A novel iterative soft interference cancellation (SIC) aided beamforming receiver is developed for high-throughput quadrature amplitude modulation systems. The proposed SIC based minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimization of the symbol error rate at the output of the detector. Adopting the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean-squared error (MMSE) detector. As expected, the proposed SIC-MSER MUD outperforms the SIC-MMSE MUD. Index Terms—Beamforming, iterative multiuser detection, minimum symbol error rate, quadrature amplitude modulation

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Near-capacity iterative decoding of binary self-concatenated codes using soft decision demapping and 3-D EXIT charts

    No full text
    In this paper 3-D Extrinsic Information Transfer (EXIT) charts are used to design binary Self-Concatenated Convolutional Codes employing Iterative Decoding (SECCC-ID), exchanging extrinsic information with the soft-decision demapper to approach the channel capacity. Recursive Systematic Convolutional (RSC) codes are selected as constituent codes, an interleaver is used for randomising the extrinsic information exchange of the constituent codes, while a puncturer helps to increase the achievable bandwidth efficiency. The convergence behaviour of the decoder is analysed with the aid of bit-based 3-D EXIT charts, for accurately calculating the operating EbN0 threshold, especially when SP based soft demapper is employed. Finally, we propose an attractive system configuration, which is capable of operating within about 1 dB from the channel capacity

    Minimum Symbol Error Rate Turbo Multiuser Beamforming Aided QAM Receiver

    No full text
    This paper studies a novel iterative soft interference cancellation (SIC) aided beamforming receiver designed for highthroughput quadrature amplitude modulation systems communicating over additive white Gaussian noise channels. The proposed linear SIC aided minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimisation of the symbol error rate at the output of the detector. Based on the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean squared error (MMSE) detector. As expected, the proposed SICMSER MUD outperforms the SIC aided MMSE MUD

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed
    corecore