199 research outputs found

    Evidence Propagation and Consensus Formation in Noisy Environments

    Full text link
    We study the effectiveness of consensus formation in multi-agent systems where there is both belief updating based on direct evidence and also belief combination between agents. In particular, we consider the scenario in which a population of agents collaborate on the best-of-n problem where the aim is to reach a consensus about which is the best (alternatively, true) state from amongst a set of states, each with a different quality value (or level of evidence). Agents' beliefs are represented within Dempster-Shafer theory by mass functions and we investigate the macro-level properties of four well-known belief combination operators for this multi-agent consensus formation problem: Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging operator. The convergence properties of the operators are considered and simulation experiments are conducted for different evidence rates and noise levels. Results show that a combination of updating on direct evidence and belief combination between agents results in better consensus to the best state than does evidence updating alone. We also find that in this framework the operators are robust to noise. Broadly, Yager's rule is shown to be the better operator under various parameter values, i.e. convergence to the best state, robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen

    An early guidance system for a general knowledge-based aiding framework using probabilistic interventions

    Get PDF
    International audienceA common decision problem repeats a lot of time with the same kind of alternatives and the same set of criteria, but with a different decision case in each occurrence. The objective of early guidance in this kind of problem is to facilitate the selection of a subset of satisfactory alternatives for each new decision case, without asking the user any knowledge of the problem. This article proposes an early guidance system based on a model of knowledge of the common decision problem. It first presents the construction of a Bayesian network for a common decision problem to embed the knowledge in the aiding framework. Second, the concept of intervention proposed by Pearl is extended to prob-abilistic interventions for a single variable and for a set of variables. Finally the early guidance procedure is presented on the basis of the Bayesian network and using a proba-bilistic intervention to set a decision case even though it is partially observed.Un problème de décision courant se répète de nom-breuses fois, avec le même type d'alternatives et le même ensemble de critères, mais avec une situation de décision différente à chaque occurence du problème. Dans ce type de problème, le conseil en amont vise à faciliter la sélec-tion d'un sous ensemble d'alternatives satisfaisantes pour le cas de décision considéré, sans demander à l'utilisateur d'avoir des connaissances sur le problème. Cet article propose un système de conseil en amont basé sur un modèle de connaissances du problème de décision courant. Pour commencer, l'article présente la construction d'un réseau bayésien pour embarquer la connaissance dans le système. Ensuite, le concept d'intervention dans un réseau bayésien proposé par Pearl est étendu aux interventions probabilistes pour des variables simples et des ensembles de variables. Enfin, la procédure de conseil en amont pour un problème de décision courant est présentée, sur la base du modèle de connaissance et en utilisant les interventions probabilistes pour fixer l'écosystème de la personne, même lorsque le cas de décision n'est que partiellement observé

    Reliable Uncertain Evidence Modeling in Bayesian Networks by Credal Networks

    Full text link
    A reliable modeling of uncertain evidence in Bayesian networks based on a set-valued quantification is proposed. Both soft and virtual evidences are considered. We show that evidence propagation in this setup can be reduced to standard updating in an augmented credal network, equivalent to a set of consistent Bayesian networks. A characterization of the computational complexity for this task is derived together with an efficient exact procedure for a subclass of instances. In the case of multiple uncertain evidences over the same variable, the proposed procedure can provide a set-valued version of the geometric approach to opinion pooling.Comment: 19 page

    Examining the dynamics of macroeconomic indicators and banking stock returns with bayesian networks

    Get PDF
    According to the modern portfolio theory, the direction of the relationship between the securities in the portfolio is stated to be effective in reducing the risk. Moreover, securities in high correlation are avoided by taking place in the same portfolio. The models structured by the Bayesian networks are capable of visually illustrate the probabilistic relationship. Also, portfolio returns could be refreshed simultaneously when new information has arrived. The study aims to provide dynamic information through Bayesian networks and to investigate the relationship between macroeconomic indicators and stock returns of Turkish major bank stocks based on the Arbitrage Pricing Model. The dataset includes stock returns of four banks listed in the Borsa Istanbul from June 2001 to January 2017. Besides, macroeconomic variables such as BIST-100 Index, oil prices, inflation, exchange, and interest rate & money supply are gathered for the same period. The results suggest that the Bayesian network models allow dynamics among stock returns could be investigated in more detail. Additionally, it determines that macroeconomic variables would have various impacts on stock returns on bank stocks by comparison of the conventional methods

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    Probabilistic Estimation of Human Interaction Needs in Context of a Robotic Assistance in Geriatrics

    Get PDF
    The key purpose of assistance robots is to help people coping with work-related or everyday tasks. To ensure an intuitive and effective support by an assistance robot, its expectation conform behavior is essential. In particular, when using assistance robots in geriatrics to assist elderly patients, special attention to the human-robot interaction should be paid. In order to help elderly patients maintain their independence and abilities as much as possible, the robot should only intervene when its support is needed. Therefore, the continuous estimation of the patient’s need for interaction is of particular importance. For enabling suitable models to estimate this need, we elaborate the use of Bayesian Networks. The analysis of our results seems promising, yielding a robust and practical approach

    Evidence Propagation and Consensus Formation in Noisy Environments:Extended Abstract

    Get PDF

    Towards a framework for computational persuasion with applications in behaviour change

    Get PDF
    Persuasion is an activity that involves one party trying to induce another party to believe something or to do something. It is an important and multifaceted human facility. Obviously, sales and marketing is heavily dependent on persuasion. But many other activities involve persuasion such as a doctor persuading a patient to drink less alcohol, a road safety expert persuading drivers to not text while driving, or an online safety expert persuading users of social media sites to not reveal too much personal information online. As computing becomes involved in every sphere of life, so too is persuasion a target for applying computer-based solutions. An automated persuasion system (APS) is a system that can engage in a dialogue with a user (the persuadee) in order to persuade the persuadee to do (or not do) some action or to believe (or not believe) something. To do this, an APS aims to use convincing arguments in order to persuade the persuadee. Computational persuasion is the study of formal models of dialogues involving arguments and counterarguments, of user models, and strategies, for APSs. A promising application area for computational persuasion is in behaviour change. Within healthcare organizations, government agencies, and non-governmental agencies, there is much interest in changing behaviour of particular groups of people away from actions that are harmful to themselves and/or to others around them
    corecore