141 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach

    New group decision making method in intuitionistic fuzzy setting based on TOPSIS

    Get PDF
    In multiple attribute group decision making, the weights of decision makers are very crucial to ranking results and have gained more and more attentions. A new approach to determining experts’ weights is proposed based on the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method in intuitionistic fuzzy setting. The weights determined by our method have two advantages: the evaluation value has a large weight if it is close to the positive ideal evaluation value and far from negative ideal evaluation values at the same time, otherwise it is assigned a small weight; experts have different weights for different attributes, which are more appropriate for real decision making problems since each expert has his/her own knowledge and expertise. The multiple attribute intuitionistic fuzzy group decision making algorithm has been proposed which is suitable for different situations about the attribute weight information, including the attribute weights are known exactly, partly known and unknown completely. A supplier selection problem and the evaluation of murals in a metro line are finally used to illustrate the feasibility, efficiency and practical advantages of the developed approaches

    Evaluating Emergency Response Solutions for Sustainable Community Development by Using Fuzzy Multi-Criteria Group Decision Making Approaches: IVDHF-TOPSIS and IVDHF-VIKOR

    Get PDF
    Emergency management is vital in implementing sustainable community development, for which community planning must include emergency response solutions to potential natural and manmade hazards. To help maintain such solution repository, we investigate effective fuzzy multi-criteria group decision making (FMCGDM) approaches for the complex problems of evaluating alternative emergency response solutions, where weights for decision makers and criteria are unknown due to problem complexity. We employ interval-valued dual hesitant fuzzy (IVDHF) set to address decision hesitancy more effectively. Based on IVDHF assessments, we develop a deviation maximizing model to compute criteria weights and another compatibility maximizing model to calculate weights for decision makers. Then, two ideal-solution-based FMCGDM approaches are proposed: (i) by introducing a synthesized IVDHF group decision matrix into TOPSIS, we develop an IVDHF-TOPSIS approach for fuzzy group settings; (ii) when emphasizing both maximum group utility and minimum individual regret, we extend VIKOR to develop an IVDHF-VIKOR approach, where the derived decision makers’ weights are utilized to obtain group decision matrix and the determined criteria weights are integrated to reflect the relative importance of distances from the compromised ideal solution. Compared with aggregation-operators-based approach, IVDHF-TOPSIS and IVDHF-VIKOR can alleviate information loss and computational complexity. Numerical examples have validated the effectiveness of the proposed approaches

    A novel sorting method topsis-sort: an applicaiton for tehran environmental quality evaluation

    Get PDF
    Many real-life problems are multi-objective by nature that requires evaluation of more than one criterion, therefore MCDM has become an important issue. In recent years, many MCDM methods have been developed; the existing approaches have been improved and extended. Multi criteria decision analysis has been regarded as a suitable set of methods to perform sustainability evaluations. Among numerous MCDM methods developed to solve real-life decision problems, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) continues to work satisfactorily in diverse application areas. In this paper, a novel sorting method (TOPSIS-Sort) based on the classic TOPSIS method is presented. In the TOPSIS-Sort approach an outranking relation is used for sorting purposes. The proposed approach uses characteristic profiles for defining the classes and outranking relation as the preference model. Application of the proposed approach is demonstrated by classifying 22 districts of Tehran into five classes (but none of the districts fits into Classes 4 and 5), representing areas with different levels of environmental quality. An analysis and assessment of the environmental conditions in Tehran helps to identify the districts with the poor environmental quality. Priority should be given to these areas to maintain and improve the quality of environment. The results obtained by the TOPSIS-Sort give credence to its success, because the results of sorting con firm our and specialists’ evaluation of the districts. This research provides appropriate results with respect to the development of sorting models in the form of outranking relations. The model, proposed by this study, is applicable to the other outranking methods such as ELECTRE, PROMETHEE, etc

    A hierarchical integration method under social constraints to maximize satisfaction in multiple criteria group decision making systems

    Get PDF
    Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for researchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers (DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is developed in this paper based on social choice theory and statistical mathematics. This method innovates by dividing the assessment into components which provides a multiple assessment analysis, assigning weights to each source regarding their position compared to the group for each considered criteria. This multiple-weighting process maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis is performed and comparisons with other methods are made. Finally, conclusions are presented.The first author acknowledges support from the Spanish Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and third author wish to recognise their support from the Serra Hunter programme. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Multi-Criteria Decision-Making Model using Intuitionistic Fuzzy Entropy and Variable Weight Theory

    Get PDF
    The aim of this research is to develop a new multi-criteria decision-making method that integrates an intuitionistic fuzzy entropy measure and variable weight theory to be implemented in different fields to provide a solution for MCDM problems when the available information is incomplete. A limited number of studies have considered determining decision maker’s weights by performing objective techniques, and almost all of these researches detected a constant weights for the decision makers. In addition, most of the MCDM studies were not formulated to perform sensitivity analysis. The new method is based on the TOPSIS model with an intuitionistic fuzzy entropy measure in the exponential-related function form and the engagement of the variable weight theory to determine weights for the decision-makers that vary as per attibutes. Lastly, a mathematical model was developed in this research to be as an input for developing the mobile-aplication based method in future for virtual use of the new MCDM method

    Underground Mining Method Selection With the Hesitant Fuzzy Linguistic Gained and Lost Dominance Score Method

    Get PDF
    Underground mining method selection is a critical decision problem for available underground ore deposits in exploitation design. As many comprehensive factors, such as physical parameters, economic benefits, and environmental effects, are claimed to be established and a group of experts are involved in the issue, the underground mining method selection is deemed as a multiple experts multiple criteria decision making problem. Classical mining method assessment exists some gaps due to the way of representing opinions. To address this matter, a hesitant fuzzy linguistic gained and lost dominance score method is investigated in this paper. To enhance the flexibility and gain more information, mining planning engineers are allowed to convey their knowledge using hesitant fuzzy linguistic term sets in the underground mining method selection process. A novel score function of hesitant fuzzy linguistic term set is introduced to compare any hesitant fuzzy linguistic term sets. Then, based on the score function, a weight determining function is proposed to calculate the weights of criteria, which can magnify the ‘‘importance’’ and ‘‘unimportance’’ of criteria. To select the mining method, the hesitant fuzzy linguistic gained and dominance score method is developed. A case study concerning selecting a extraction method for a real mine in Yunnan province of China is presented to illustrate the applicability of the proposed method. The effectiveness of the proposed method is finally verified by comparing with other ranking methodsNational Natural Science Foundation of China under Grant 71501135 and Grant 717711562019 Sichuan Planning Project of Social Science under Grant SC18A0072018 Key Project of the Key Research Institute of Humanities and Social Sciences in Sichuan Province under Grant Xq18A01 and Grant LYC18-02Electronic Commerce and Modern Logistics Research Center Program, Key Research Base of Humanities and Social Science, Sichuan Provincial Education Department, under Grant DSWL18-2Spark Project of Innovation, Sichuan University, under Grant 2018hhs-43Scientific Research Foundation for Excellent Young Scholars, Sichuan University, under Grant 2016SCU04A23

    A SD-IITFOWA operator and TOPSIS based approach for MAGDM problems with intuitionistic trapezoidal fuzzy numbers

    Get PDF
    The aim of this article is to investigate an approach to multiple attribute group decision making (MAGDM) problems in which the information about decision makers (DMs) weights is completely unknown in advance, the attributes are inter-dependent, and the attribute values take the form of intuitionistic trapezoidal fuzzy numbers. First, the concept of similarity degree (SD) for two intuitionistic trapezoidal fuzzy decision matrixes is defined, which measures the level of consensus between individual decision opinion and group decision opinion. Next, we develop some IITFOWA operators to aggregate intuitionistic trapezoidal fuzzy decision matrixes in MAGDM problems. In particular, we present the SD induced IITFOWA (SD-IITFOWA) operator, which induces the order of argument values by utilizing the similarity degree of decision makers. This operator aggregates individual opinion in such a way that more importance is placed on the most similarity one. Then, a SD-IITFOWA operator and TOPSIS method based approach is developed to solve the MAGDM problems with intuitionistic trapezoidal fuzzy numbers. Finally, the developed approach is used to select the right suppliers for a computer company
    corecore