453 research outputs found

    Facial soft biometrics for recognition in the wild: recent works, annotation and COTS evaluation

    Full text link
    The role of soft biometrics to enhance person recognition systems in unconstrained scenarios has not been extensively studied. Here, we explore the utility of the following modalities: gender, ethnicity, age, glasses, beard and moustache. We consider two assumptions: i) manual estimation of soft biometrics, and ii) automatic estimation from two Commercial Off-The-Shelf systems (COTS). All experiments are reported using the LFW database. First, we study the discrimination capabilities of soft biometrics standalone. Then, experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning. We observe that soft biometrics is a valuable complement to the face modality in unconstrained scenarios, with relative improvements up to 40%=15% in the verification performance when using manual/automatic soft biometrics estimation. Results are reproducible as we make public our manual annotations and COTS outputs of soft biometrics over LFW, as well as the face recognition scoresThis work was funded by Spanish Guardia Civil and project CogniMetrics (TEC2015-70627-R) from MINECO/FEDE

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    A Wearable System that Knows Who Wears It

    Get PDF
    Body-area networks of pervasive wearable devices are increasingly used for health monitoring, personal assistance, entertainment, and home automation. In an ideal world, a user would simply wear their desired set of devices with no configuration necessary: the devices would discover each other, recognize that they are on the same person, construct a secure communications channel, and recognize the user to which they are attached. In this paper we address a portion of this vision by offering a wearable system that unobtrusively recognizes the person wearing it. Because it can recognize the user, our system can properly label sensor data or personalize interactions. \par Our recognition method uses bioimpedance, a measurement of how tissue responds when exposed to an electrical current. By collecting bioimpedance samples using a small wearable device we designed, our system can determine that (a)the wearer is indeed the expected person and (b) the device is physically on the wearer\u27s body. Our recognition method works with 98% balanced-accuracy under a cross-validation of a day\u27s worth of bioimpedance samples from a cohort of 8 volunteer subjects. We also demonstrate that our system continues to recognize a subset of these subjects even several months later. Finally, we measure the energy requirements of our system as implemented on a Nexus S smart phone and custom-designed module for the Shimmer sensing platform

    Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    Get PDF
    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications

    Who Wears Me? Bioimpedance as a Passive Biometric

    Get PDF
    Mobile and wearable systems for monitoring health are becoming common. If such an mHealth system knows the identity of its wearer, the system can properly label and store data collected by the system. Existing recognition schemes for such mobile applications and pervasive devices are not particularly usable – they require ıt active engagement with the person (e.g., the input of passwords), or they are too easy to fool (e.g., they depend on the presence of a device that is easily stolen or lost). \par We present a wearable sensor to passively recognize people. Our sensor uses the unique electrical properties of a person\u27s body to recognize their identity. More specifically, the sensor uses ıt bioimpedance – a measure of how the body\u27s tissues oppose a tiny applied alternating current – and learns how a person\u27s body uniquely responds to alternating current of different frequencies. In this paper we demonstrate the feasibility of our system by showing its effectiveness at accurately recognizing people in a household 90% of the time

    Machine Learning Approaches to Human Body Shape Analysis

    Get PDF
    Soft biometrics, biomedical sciences, and many other fields of study pay particular attention to the study of the geometric description of the human body, and its variations. Although multiple contributions, the interest is particularly high given the non-rigid nature of the human body, capable of assuming different poses, and numerous shapes due to variable body composition. Unfortunately, a well-known costly requirement in data-driven machine learning, and particularly in the human-based analysis, is the availability of data, in the form of geometric information (body measurements) with related vision information (natural images, 3D mesh, etc.). We introduce a computer graphics framework able to generate thousands of synthetic human body meshes, representing a population of individuals with stratified information: gender, Body Fat Percentage (BFP), anthropometric measurements, and pose. This contribution permits an extensive analysis of different bodies in different poses, avoiding the demanding, and expensive acquisition process. We design a virtual environment able to take advantage of the generated bodies, to infer the body surface area (BSA) from a single view. The framework permits to simulate the acquisition process of newly introduced RGB-D devices disentangling different noise components (sensor noise, optical distortion, body part occlusions). Common geometric descriptors in soft biometric, as well as in biomedical sciences, are based on body measurements. Unfortunately, as we prove, these descriptors are not pose invariant, constraining the usability in controlled scenarios. We introduce a differential geometry approach assuming body pose variations as isometric transformations of the body surface, and body composition changes covariant to the body surface area. This setting permits the use of the Laplace-Beltrami operator on the 2D body manifold, describing the body with a compact, efficient, and pose invariant representation. We design a neural network architecture able to infer important body semantics from spectral descriptors, closing the gap between abstract spectral features, and traditional measurement-based indices. Studying the manifold of body shapes, we propose an innovative generative adversarial model able to learn the body shapes. The method permits to generate new bodies with unseen geometries as a walk on the latent space, constituting a significant advantage over traditional generative methods

    Investigating the Role of Multibiometric Authentication in Professional Certification E-exams

    Get PDF
    E-learning has grown to such an extent that paper-based testing is being replaced by computer-based testing also known as e-exams. Because these e-exams can be delivered outside of the traditional proctored environment, additional authentication measures must be employed in order to offer similar authentication assurance as found in proctored, Paper-Based Testing (PBT). In this study, we extended the body of knowledge in e-learning research by comparing e-exam scores and durations of three separate groups of e-exam takers using different authentication methods: Online Using Username/Password (OLUP), In-Testing Proctored Center (ITPC), and Online Proctored with Multibiometrics (OPMB). The aim was to better understand the role as well as the possible effect of continuous and dynamic multibiometric authentication on professional certification e-exam scores and durations. Our results indicated that group affiliation, i.e. type of authentication methods, had no significant effect on differences among e-exam scores and durations. While there was a clear path of increased mean e-exam score as authentication method was relaxed, it was evident from the analysis that these were not statistically significant,probably due to the limited sample size. Age was found to have a significant effect on e-exam scores where younger participants were found to have higher e-exam scores and lower e-exam durations than older participants. Gender was not found to have a significant effect on e-exam scores nor durations. This study’s results can help organizations better understand the role, possible effect, and potential application of continuous and dynamic multibiometric authentication as a justifiable approach when compared with the more common authentication approach ofUser Identifier (UID) and password, both in professional certification e-exams as well as in an online environment
    • 

    corecore