95 research outputs found

    Many-body correlations from integral geometry

    Get PDF
    In a recent letter we presented a framework for predicting the concentrations of many-particle local structures inside the bulk liquid as a route to assessing changes in the liquid approaching dynamical arrest. Central to this framework was the morphometric approach, a synthesis of integral geometry and liquid state theory, which has traditionally been derived from fundamental measure theory. We present the morphometric approach in a new context as a generalisation of scaled particle theory, and derive several morphometric theories for hard spheres of fundamental and practical interest. Our central result is a new theory which is particularly suited to the treatment of many-body correlation functions in the hard sphere liquid, which we demonstrate by numerical tests against simulation.Comment: 12 pages, 6 figure

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He∗^* and charge-exchange 6^6Li(n,p)6^6He∗^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1−,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps

    Optimal Phase Transitions in Compressed Sensing

    Full text link
    Compressed sensing deals with efficient recovery of analog signals from linear encodings. This paper presents a statistical study of compressed sensing by modeling the input signal as an i.i.d. process with known distribution. Three classes of encoders are considered, namely optimal nonlinear, optimal linear and random linear encoders. Focusing on optimal decoders, we investigate the fundamental tradeoff between measurement rate and reconstruction fidelity gauged by error probability and noise sensitivity in the absence and presence of measurement noise, respectively. The optimal phase transition threshold is determined as a functional of the input distribution and compared to suboptimal thresholds achieved by popular reconstruction algorithms. In particular, we show that Gaussian sensing matrices incur no penalty on the phase transition threshold with respect to optimal nonlinear encoding. Our results also provide a rigorous justification of previous results based on replica heuristics in the weak-noise regime.Comment: to appear in IEEE Transactions of Information Theor

    On the existence of solutions to adversarial training in multiclass classification

    Full text link
    We study three models of the problem of adversarial training in multiclass classification designed to construct robust classifiers against adversarial perturbations of data in the agnostic-classifier setting. We prove the existence of Borel measurable robust classifiers in each model and provide a unified perspective of the adversarial training problem, expanding the connections with optimal transport initiated by the authors in previous work and developing new connections between adversarial training in the multiclass setting and total variation regularization. As a corollary of our results, we prove the existence of Borel measurable solutions to the agnostic adversarial training problem in the binary classification setting, a result that improves results in the literature of adversarial training, where robust classifiers were only known to exist within the enlarged universal σ\sigma-algebra of the feature space

    Dispersion relations for η′→ηππ\eta'\to\eta\pi\pi

    Full text link
    We present a dispersive analysis of the decay amplitude for η′→ηππ\eta'\to\eta\pi\pi that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the ππ\pi\pi and πη\pi\eta scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.Comment: 22 pages, 10 figures; v2: added footnote, version published in EPJ

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    Precision theoretical methods for large-scale structure of the Universe

    Get PDF
    We develop new analytic methods to accurately describe the formation of cosmic large-scale structure. These methods are based on the path integral formalism and allows one to efficiently address a number of long-standing problems in the field. We describe the non-linear evolution of the baryon acoustic oscillations (BAO) in the distribution of matter. We argue for the need for resummation of large infrared (IR) enhanced contributions from bulk flows. We show how this can be done via a systematic resummation of Feynman diagrams guided by well-defined power counting rules. We formulate IR resummation both in real and redshift spaces. For the latter we develop a new method that maps cosmological correlation functions from real to redshift space and retains their IR finiteness. Our results agree well with the N-body simulation data at the BAO scales. This establishes IR resummation within our approach as a robust and complete procedure and provides a consistent theoretical model for the BAO feature in the statistics of matter and biased tracers in real and redshift spaces. Eventually, we perform a non-perturbative calculation of the 1-point probability distribution function (PDF) for the spherically-averaged matter density field. We evaluate the PDF in the saddle-point approximation and show how it factorizes into an exponent given by a spherically symmetric saddle-point solution and a prefactor produced by fluctuations. The prefactor splits into a monopole contribution which is evaluated exactly, and a factor corresponding to aspherical fluctuations. The latter is crucial for the consistency of the calculation: neglecting it would make the PDF incompatible with translational invariance. We compute the aspherical prefactor using a combination of analytic and numerical techniques, identify the sensitivity to the short-scale physics and argue that it must be properly renormalized. Finally, we compare our result with N-body simulation data and find an excellent agreement
    • …
    corecore