65,861 research outputs found

    Capture and Modeling of Non-Linear Heterogeneous Soft Tissue

    Get PDF
    This paper introduces a data-driven representation and modeling technique for simulating non-linear heterogeneous soft tissue. It simplifies the construction of convincing deformable models by avoiding complex selection and tuning of physical material parameters, yet retaining the richness of non-linear heterogeneous behavior. We acquire a set of example deformations of a real object, and represent each of them as a spatially varying stress-strain relationship in a finite-element model. We then model the material by non-linear interpolation of these stress-strain relationships in strain-space. Our method relies on a simple-to-build capture system and an efficient run-time simulation algorithm based on incremental loading, making it suitable for interactive computer graphics applications. We present the results of our approach for several non-linear materials and biological soft tissue, with accurate agreement of our model to the measured data.Engineering and Applied Science

    Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

    Get PDF
    The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics

    Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

    Get PDF
    The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics

    Characterization of soft tissue cutting for haptic display: experiments and computational models

    Get PDF
    Real-time medical simulation for robotic surgery planning and surgery training requires realistic yet computationally fast models of the mechanical behavior of soft tissue. This work presents a study to develop such a model to enable fast haptics display in simulation of softtissue cutting. An apparatus was developed and experiments were conducted to generate force-displacement data for cutting of soft tissue such as pig liver. The force-displacement curve of cutting pig liver revealed a characteristic pattern: the overall curve is formed by repeating units consisting of a local deformation segment followed by a local crack-growth segment. The modeling effort reported here focused on characterizing the tissue in the local deformation segment for fast haptic display. The deformation resistance of the tissue was quantified in terms of the local effective modulus (LEM) consistent with experimental forcedisplacement data. An algorithm was developed to determine LEM by solving an inverse problem with iterative finite element models. To enable faster simulation of cutting of a threedimensional (3D) liver specimen of naturally varying thickness, three levels of model order reduction were studied. Additionally, the variation of the LEM with cutting speed was determined. The values of LEM decreased as the cutting speed increased. This thesis also includes the characteristic response of soft tissue to the growth of a cut (cracking) with a scalpel blade. The experimentally measured cut-force versus cut-length data was used to determine the soft tissue’s resistance to fracture (resistance to crack extension) in scalpel cutting. The resistance to fracture of the soft tissue is defined as the amount of mechanical work needed to cause a cut (crack) to extend for a unit length in a soft-tissue sample of unit thickness. The equipment, method, and model are applicable for all soft tissue.Finally, the method of determining the property of the pig liver tissue during cutting was verified. Dual C-arm fluoroscopes were used to obtain the motion of the beads embedded inside the specimen during cutting. The experimentally measured displacement field was compared to the displacement field obtained through finite element model based on the LEM values at each localized area.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 200

    Nonlinear Elastic Material Property Estimation of Lower Extremity Residual Limb Tissues

    Get PDF
    The interface stresses between the residual limb and prosthetic socket have been studied to investigate prosthetic fit. Finite-element models of the residual limb-prosthetic socket interface facilitate investigation of the mechanical interface and may serve as a potential tool for future prosthetic socket design. However, the success of such residual limb models to date has been limited, in large part due to inadequate material formulations used to approximate the mechanical behavior of residual limb soft tissues. Nonlinear finite-element analysis was used to simulate force-displacement data obtained during in vivo rate-controlled (1, 5, and 10 mm/s) cyclic indentation of the residual limb soft tissues of seven individuals with transtibial amputation. The finite-element models facilitated determination of an appropriate set of nonlinear elastic material coefficients for bulk soft tissue at discrete clinically relevant test locations. Axisymmetric finite-element models of the residual limb bulk soft tissue in the vicinity of the test location, the socket wall and the indentor tip were developed incorporating contact analysis, large displacement, and large strain, and the James-Green-Simpson nonlinear elastic material formulation. Model dimensions were based on medical imaging studies of the residual limbs. The material coefficients were selected such that the normalized sum of square error (NSSE) between the experimental and finite-element model indentor tip reaction force was minimized. A total of 95% of the experimental data were simulated using the James-Green-Simpson material formulation with an NSSE less than 5%. The respective James-Green-Simpson material coefficients varied with subject, test location, and indentation rate. Therefore, these coefficients cannot be readily extrapolated to other sites or individuals, or to the same site and individual some time after testing

    The accuracy of three-dimensional prediction of soft tissue changes following the surgical correction of facial asymmetry: an innovative concept

    Get PDF
    The accuracy of three-dimensional (3D) predictions of soft tissue changes in the surgical correction of facial asymmetry was evaluated in this study. Preoperative (T1) and 6–12-month postoperative (T2) cone beam computed tomography scans of 13 patients were studied. All patients underwent surgical correction of facial asymmetry as part of a multidisciplinary treatment protocol. The magnitude of the surgical movement was measured; virtual surgery was performed on the preoperative scans using Maxilim software. The predicted soft tissue changes were compared to the actual postoperative appearance (T2). Mean (signed) distances and mean (absolute) distances between the predicted and actual 3D surface meshes for each region were calculated. The one-sample t-test was applied to test the alternative hypothesis that the mean absolute distances had a value of <2.0 mm. A novel directional analysis was applied to analyse the accuracy of the prediction of soft tissue changes. The results showed that the distances between the predicted and actual postoperative soft tissue changes were less than 2.0 mm in all regions. The predicted facial morphology was narrower than the actual surgical changes in the cheek regions. 3D soft tissue prediction using Maxilim software in patients undergoing the correction of facial asymmetry is clinically acceptable

    A 3D discrete model of the diaphragm and human trunk

    Full text link
    In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated.Comment: published in: "Lung Modelling", France (2006

    Observations and models for needle-tissue interactions

    Get PDF
    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions were used to characterize the interactions at the bevel tip and along the needle shaft. The model design was guided by microscopic observations of several needle- gel interactions. The energy-based model formulation incor- porates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot- driven needle interacting with different kinds of gels. These results contribute to a mechanics-based model of robotic needle steering, extending previous work on kinematic models
    • 

    corecore