128,379 research outputs found

    Data-driven soft-sensors for online monitoring of batch processes with different initial conditions

    Get PDF
    A soft-sensing methodology applicable to batch processes operated under changeable initial conditions is presented. These cases appear when the raw materials specifications differ from batch to batch, different production scenarios should be managed, etc. The proposal exploits the capabilities of the machine learning techniques to provide practical soft-sensing approach with minimum tuning effort in spite of the fact that the inherent dynamic behavior of batch systems are tracked through other online indirect measurements. Current data modeling techniques have been also tested within the proposed methodology to demonstrate its advantages. Two simulation case-studies and a pilot-plant case-study involving a complex batch process for wastewater treatment are used to illustrate the problem, to assess the modeling approach and to compare the modeling techniques. The results reflect a promising accuracy even when the training information is scarce, allowing significant reductions in the cost associated to batch processes monitoring and control.Peer ReviewedPostprint (author's final draft

    Mechanistic modeling of architectural vulnerability factor

    Get PDF
    Reliability to soft errors is a significant design challenge in modern microprocessors owing to an exponential increase in the number of transistors on chip and the reduction in operating voltages with each process generation. Architectural Vulnerability Factor (AVF) modeling using microarchitectural simulators enables architects to make informed performance, power, and reliability tradeoffs. However, such simulators are time-consuming and do not reveal the microarchitectural mechanisms that influence AVF. In this article, we present an accurate first-order mechanistic analytical model to compute AVF, developed using the first principles of an out-of-order superscalar execution. This model provides insight into the fundamental interactions between the workload and microarchitecture that together influence AVF. We use the model to perform design space exploration, parametric sweeps, and workload characterization for AVF

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM

    Development Environment for Optimized Locomotion System of Planetary Rovers

    Get PDF
    This paper addresses the first steps that have been undergone to set up the development environement w.r.t optimization and to modelling and simulation of overall dynamics of the rover driving behaviour under all critical surface terrains, like soft and hard soils, slippage, bulldozing effect and digging in soft soil. Optimization is based on MOPS (Multi-Objective Prameter Synthesis), that is capable for handling several objective functions such as mass reduction, motor power reduction, increase of traction forces, rover stability guarantee, and more. The tool interferes with Matlab/Simulink and with Modelica/Dymola for dynamics model implementation. For modelling and simulation of the overall rover dynamics and terramechanical behaviour in all kind of soils we apply a Matlab based tool that takes advantage of the multibody dynamics tool Simpack. First results of very promising rover optimizations 6 wheels are presented that improve ExoMars rover type wheel suspension systems. Performance of driveability behaviour in different soils is presented as well. The next steps are discusses in order to achieve the planned overall development environment

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft
    • …
    corecore