23,172 research outputs found

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Fault Secure Encoder and Decoder for NanoMemory Applications

    Get PDF
    Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and decoder. We prove that Euclidean geometry low-density parity-check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 10% and fault rates of 10^(-18) upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 10^(11) bit/cm^2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead
    corecore