3,968 research outputs found

    Developments in the theory of randomized shortest paths with a comparison of graph node distances

    Get PDF
    There have lately been several suggestions for parametrized distances on a graph that generalize the shortest path distance and the commute time or resistance distance. The need for developing such distances has risen from the observation that the above-mentioned common distances in many situations fail to take into account the global structure of the graph. In this article, we develop the theory of one family of graph node distances, known as the randomized shortest path dissimilarity, which has its foundation in statistical physics. We show that the randomized shortest path dissimilarity can be easily computed in closed form for all pairs of nodes of a graph. Moreover, we come up with a new definition of a distance measure that we call the free energy distance. The free energy distance can be seen as an upgrade of the randomized shortest path dissimilarity as it defines a metric, in addition to which it satisfies the graph-geodetic property. The derivation and computation of the free energy distance are also straightforward. We then make a comparison between a set of generalized distances that interpolate between the shortest path distance and the commute time, or resistance distance. This comparison focuses on the applicability of the distances in graph node clustering and classification. The comparison, in general, shows that the parametrized distances perform well in the tasks. In particular, we see that the results obtained with the free energy distance are among the best in all the experiments.Comment: 30 pages, 4 figures, 3 table

    An exact approach for the pollution-routing problem

    Get PDF

    New Routing Problems with possibly correlated travel times

    Get PDF
    In the literature of operational research, Vehicle Routing Problems (VRP) were and still are subject of countless studies. Under the scope of combinatorial optimization, this thesis analyses some variants of VRP both with deterministic and uncertain travel times. The deterministic problem under study is a drayage problem with characteristics con- cerning service types and requirement seldom investigated all together. The formulations proposed to model this problem are: the node-arc formulation and the Set Partitioning formu- lation. Concerning the solution methods, two heuristics and a branch-and-price approach are presented. The section dealing with uncertain and correlated travel times faces two classes of VRP with time windows using either single or joint chance constraints depending on whether missing a customers time window makes the entire route infeasible or not. From a comparison between deterministic and stochastic methods, these last represent a profitable investment to guarantee the feasibility of the solution in realistic instances
    • …
    corecore