2,280 research outputs found

    Discriminative Scale Space Tracking

    Full text link
    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.Comment: To appear in TPAMI. This is the journal extension of the VOT2014-winning DSST tracking metho

    Iterative joint channel and data estimation for rank-deficient MIMO-OFDM

    No full text
    In this paper we propose a turbo-detected multi-antenna-multi-carrier receiver scheme. Following the philosophy of the turbo processing, our turbo MIMO-OFDM receiver comprises a succession of detection modules, namely the channel estimator, the space-time detector and the decoder, which iteratively exchange soft bit-related information and thus facilitate a substantial improvement of the overall system performance. In this paper we analyze the achievable performance of the iterative system proposed with the aim of documenting the various design trade-offs, such as the achievable error-rate performance, the attainable data-rate as well as the associated computational complexity. Specifically, we report a virtually error-free performance for a rate-1/2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effective throughput of 8*2/2=8 bits/sec/Hz and having a pilot overhead of only 10%, at SNR of 7.5dB and normalized Doppler frequency of 0.003, which corresponds to a mobile terminal speed of about 65 km/h
    • …
    corecore