249,070 research outputs found

    Hand-based multimodal identification system with secure biometric template storage

    Get PDF
    WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio

    An Efficient Fingerprint Identification using Neural Network and BAT Algorithm

    Get PDF
    The uniqueness, firmness, public recognition, and its minimum risk of intrusion made fingerprint is an expansively used personal authentication metrics. Fingerprint technology is a biometric technique used to distinguish persons based on their physical traits. Fingerprint based authentication schemes are becoming increasingly common and usage of these in fingerprint security schemes, made an objective to the attackers. The repute of the fingerprint image controls the sturdiness of a fingerprint authentication system. We intend for an effective method for fingerprint classification with the help of soft computing methods. The proposed classification scheme is classified into three phases. The first phase is preprocessing in which the fingerprint images are enhanced by employing median filters. After noise removal histogram equalization is achieved for augmenting the images. The second stage is the feature Extraction phase in which numerous image features such as Area, SURF, holo entropy, and SIFT features are extracted. The final phase is classification using hybrid Neural for classification of fingerprint as fake or original. The neural network is unified with BAT algorithm for optimizing the weight factor

    Deep Sketch-Photo Face Recognition Assisted by Facial Attributes

    Full text link
    In this paper, we present a deep coupled framework to address the problem of matching sketch image against a gallery of mugshots. Face sketches have the essential in- formation about the spatial topology and geometric details of faces while missing some important facial attributes such as ethnicity, hair, eye, and skin color. We propose a cou- pled deep neural network architecture which utilizes facial attributes in order to improve the sketch-photo recognition performance. The proposed Attribute-Assisted Deep Con- volutional Neural Network (AADCNN) method exploits the facial attributes and leverages the loss functions from the facial attributes identification and face verification tasks in order to learn rich discriminative features in a common em- bedding subspace. The facial attribute identification task increases the inter-personal variations by pushing apart the embedded features extracted from individuals with differ- ent facial attributes, while the verification task reduces the intra-personal variations by pulling together all the fea- tures that are related to one person. The learned discrim- inative features can be well generalized to new identities not seen in the training data. The proposed architecture is able to make full use of the sketch and complementary fa- cial attribute information to train a deep model compared to the conventional sketch-photo recognition methods. Exten- sive experiments are performed on composite (E-PRIP) and semi-forensic (IIIT-D semi-forensic) datasets. The results show the superiority of our method compared to the state- of-the-art models in sketch-photo recognition algorithm

    On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and Semantic data

    No full text
    In outdoor scenarios such as surveillance where there is very little control over the environments, complex computer vision algorithms are often required for analysis. However constrained environments, such as walkways in airports where the surroundings and the path taken by individuals can be controlled, provide an ideal application for such systems. Figure 1.1 depicts an idealised constrained environment. The path taken by the subject is restricted to a narrow path and once inside is in a volume where lighting and other conditions are controlled to facilitate biometric analysis. The ability to control the surroundings and the flow of people greatly simplifes the computer vision task, compared to typical unconstrained environments. Even though biometric datasets with greater than one hundred people are increasingly common, there is still very little known about the inter and intra-subject variation in many biometrics. This information is essential to estimate the recognition capability and limits of automatic recognition systems. In order to accurately estimate the inter- and the intra- class variance, substantially larger datasets are required [40]. Covariates such as facial expression, headwear, footwear type, surface type and carried items are attracting increasing attention; although considering the potentially large impact on an individuals biometrics, large trials need to be conducted to establish how much variance results. This chapter is the first description of the multibiometric data acquired using the University of Southampton's Multi-Biometric Tunnel [26, 37]; a biometric portal using automatic gait, face and ear recognition for identification purposes. The tunnel provides a constrained environment and is ideal for use in high throughput security scenarios and for the collection of large datasets. We describe the current state of data acquisition of face, gait, ear, and semantic data and present early results showing the quality and range of data that has been collected. The main novelties of this dataset in comparison with other multi-biometric datasets are: 1. gait data exists for multiple views and is synchronised, allowing 3D reconstruction and analysis; 2. the face data is a sequence of images allowing for face recognition in video; 3. the ear data is acquired in a relatively unconstrained environment, as a subject walks past; and 4. the semantic data is considerably more extensive than has been available previously. We shall aim to show the advantages of this new data in biometric analysis, though the scope for such analysis is considerably greater than time and space allows for here

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future
    corecore