36 research outputs found

    Multiobjective global surrogate modeling, dealing with the 5-percent problem

    Get PDF
    When dealing with computationally expensive simulation codes or process measurement data, surrogate modeling methods are firmly established as facilitators for design space exploration, sensitivity analysis, visualization, prototyping and optimization. Typically the model parameter (=hyperparameter) optimization problem as part of global surrogate modeling is formulated in a single objective way. Models are generated according to a single objective (accuracy). However, this requires an engineer to determine a single accuracy target and measure upfront, which is hard to do if the behavior of the response is unknown. Likewise, the different outputs of a multi-output system are typically modeled separately by independent models. Again, a multiobjective approach would benefit the domain expert by giving information about output correlation and enabling automatic model type selection for each output dynamically. With this paper the authors attempt to increase awareness of the subtleties involved and discuss a number of solutions and applications. In particular, we present a multiobjective framework for global surrogate model generation to help tackle both problems and that is applicable in both the static and sequential design (adaptive sampling) case

    Uncertainty quantification in graph-based classification of high dimensional data

    Get PDF
    Classification of high dimensional data finds wide-ranging applications. In many of these applications equipping the resulting classification with a measure of uncertainty may be as important as the classification itself. In this paper we introduce, develop algorithms for, and investigate the properties of, a variety of Bayesian models for the task of binary classification; via the posterior distribution on the classification labels, these methods automatically give measures of uncertainty. The methods are all based around the graph formulation of semi-supervised learning. We provide a unified framework which brings together a variety of methods which have been introduced in different communities within the mathematical sciences. We study probit classification in the graph-based setting, generalize the level-set method for Bayesian inverse problems to the classification setting, and generalize the Ginzburg-Landau optimization-based classifier to a Bayesian setting; we also show that the probit and level set approaches are natural relaxations of the harmonic function approach introduced in [Zhu et al 2003]. We introduce efficient numerical methods, suited to large data-sets, for both MCMC-based sampling as well as gradient-based MAP estimation. Through numerical experiments we study classification accuracy and uncertainty quantification for our models; these experiments showcase a suite of datasets commonly used to evaluate graph-based semi-supervised learning algorithms.Comment: 33 pages, 14 figure

    Robust semi-supervised learning: projections, limits & constraints

    Get PDF
    In many domains of science and society, the amount of data being gathered is increasing rapidly. To estimate input-output relationships that are often of interest, supervised learning techniques rely on a specific type of data: labeled examples for which we know both the input and an outcome. The problem of semi-supervised learning is how to use, increasingly abundantly available, unlabeled examples, with unknown outcomes, to improve supervised learning methods. This thesis is concerned with the question if and how these improvements are possible in a "robust", or safe, way: can we guarantee these methods do not lead to worse performance than the supervised solution?We show that for some supervised classifiers, most notably, the least squares classifier, semi-supervised adaptations can be constructed where this non-degradation in performance can indeed be guaranteed, in terms of the surrogate loss used by the classifier. Since these guarantees are given in terms of the surrogate loss, we explore why this is a useful criterion to evaluate performance. We then prove that semi-supervised versions with strict non-degradation guarantees are not possible for a large class of commonly used supervised classifiers. Other aspects covered in the thesis include optimistic learning, the peaking phenomenon and reproducibility.COMMIT - Project P23LUMC / Geneeskunde Repositoriu

    EXPLOITING TAGGED AND UNTAGGED CORPORA FOR WORD SENSE DISAMBIGUATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Discriminative, generative, and imitative learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 201-212).I propose a common framework that combines three different paradigms in machine learning: generative, discriminative and imitative learning. A generative probabilistic distribution is a principled way to model many machine learning and machine perception problems. Therein, one provides domain specific knowledge in terms of structure and parameter priors over the joint space of variables. Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this knowledge and subsequently refining it with data and observations. The final result is a distribution that is a good generator of novel exemplars. Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing for a specific task, such as classification or prediction. This typically leads to superior performance yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination (MED) as a framework to combine both discriminative estimation and generative probability densities. Calculations involve distributions over parameters, margins, and priors and are provably and uniquely solvable for the exponential family. Extensions include regression, feature selection, and transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature selection, to obtain substantial improvements. To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-Maximization (EM) algorithm for latent discriminative learning (or latent MED).(cont.) While EM and Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds, is computable efficiently and is globally guaranteed. It permits powerful discriminative learning with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures of multinomials and hidden Markov models). We provide empirical results on standardized data sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and reverse-Jensen bounds over state of the art discriminative techniques or generative approaches. Subsequently, imitative learning is presented as another variation on generative modeling which also learns from exemplars from an observed data source. However, the distinction is that the generative model is an agent that is interacting in a much more complex surrounding external world. It is not efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning (under appropriate conditions) can be adequately addressed as a discriminative prediction task which outperforms the usual generative approach. This discriminative-imitative learning approach is applied with a generative perceptual system to synthesize a real-time agent that learns to engage in social interactive behavior.by Tony Jebara.Ph.D

    Ontology-based annotation of paintings with artistic concepts

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Variational inference & deep learning:A new synthesis

    Get PDF

    A Unified Framework for Gradient-based Hyperparameter Optimization and Meta-learning

    Get PDF
    Machine learning algorithms and systems are progressively becoming part of our societies, leading to a growing need of building a vast multitude of accurate, reliable and interpretable models which should possibly exploit similarities among tasks. Automating segments of machine learning itself seems to be a natural step to undertake to deliver increasingly capable systems able to perform well in both the big-data and the few-shot learning regimes. Hyperparameter optimization (HPO) and meta-learning (MTL) constitute two building blocks of this growing effort. We explore these two topics under a unifying perspective, presenting a mathematical framework linked to bilevel programming that captures existing similarities and translates into procedures of practical interest rooted in algorithmic differentiation. We discuss the derivation, applicability and computational complexity of these methods and establish several approximation properties for a class of objective functions of the underlying bilevel programs. In HPO, these algorithms generalize and extend previous work on gradient-based methods. In MTL, the resulting framework subsumes classic and emerging strategies and provides a starting basis from which to build and analyze novel techniques. A series of examples and numerical simulations offer insight and highlight some limitations of these approaches. Experiments on larger-scale problems show the potential gains of the proposed methods in real-world applications. Finally, we develop two extensions of the basic algorithms apt to optimize a class of discrete hyperparameters (graph edges) in an application to relational learning and to tune online learning rate schedules for training neural network models, an old but crucially important issue in machine learning
    corecore