345 research outputs found

    Case Study on Human-Robot Interaction of the Remote-Controlled Service Robot for Elderly and Disabled Care

    Get PDF
    The tendency of continuous aging of the population and the increasing number of people with mobility difficulties leads to increased research in the field of Assistive Service Robotics. These robots can help with daily life tasks such as reminding to take medications, serving food and drinks, controlling home appliances and even monitoring health status. When talking about assisting people in their homes, it should be noted that they will, most of the time, have to communicate with the robot themselves and be able to manage it so that they can get the most out of the robot's services. This research is focused on different methods of remote control of a mobile robot equipped with robotic manipulator. The research investigates in detail methods based on control via gestures, voice commands, and web-based graphical user interface. The capabilities of these methods for Human-Robot Interaction (HRI) have been explored in terms of usability. In this paper, we introduce a new version of the robot Robco 19, new leap motion sensor control of the robot and a new multi-channel control system. The paper presents methodology for performing the HRI experiments from human perception and summarizes the results in applications of the investigated remote control methods in real life scenarios

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    A study on different experimental configurations for age, race, and gender estimation problems

    Get PDF
    This paper presents a detailed study about different algorithmic configurations for estimating soft biometric traits. In particular, a recently introduced common framework is the starting point of the study: it includes an initial facial detection, the subsequent facial traits description, the data reduction step, and the final classification step. The algorithmic configurations are featured by different descriptors and different strategies to build the training dataset and to scale the data in input to the classifier. Experimental proofs have been carried out on both publicly available datasets and image sequences specifically acquired in order to evaluate the performance even under real-world conditions, i.e., in the presence of scaling and rotation

    La utilización de robots para mitigar la soledad en las personas mayores: estado del arte

    Get PDF
    La introducción en nuestra vida diaria de las tecnologías para la comunicación e internet (ICT) en el mundo actual es un hecho equiparable a la alfabetización y la introducción de la radio en los hogares en otros momentos de la historia. Paralelo a esa introducción y al desarrollo de los sistemas de información se está produciendo el desarrollo de sistemas autónomos o robots. El objetivo de este trabajo es la realización de un estado del arte sobre el uso de los robots como medio para mejorar su actividad social o mitigar los efectos de la soledad en las personas mayores o muy mayores. Metodología: se ha revisado publicaciones indexadas en las principales bases de datos consultadas por investigadores del área social, sanitaria y tecnológica y se ha trabajado con las últimas revisiones sistemáticas publicadas. Este estudio se ha elegido por la necesidad de disponer de fuentes fiables y contrastadas que aporten evidencias en relación al tópico tratado. Conclusiones: Los resultados positivos obtenidos en la mejora de las situaciones de soledad con la utilización de robots alientan a seguir investigando

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe
    corecore