32 research outputs found

    On The Impact of Internet Naming Evolution: Deployment, Performance, and Security Implications

    Get PDF
    As one of the most critical components of the Internet, the Domain Name System (DNS) provides naming services for Internet users, who rely on DNS to perform the translation between the domain names and network entities before establishing an In- ternet connection. In this dissertation, we present our studies on different aspects of the naming infrastructure in today’s Internet, including DNS itself and the network services based on the naming infrastructure such as Content Delivery Networks (CDNs). We first characterize the evolution and features of the DNS resolution in web ser- vices under the emergence of third-party hosting services and cloud platforms. at the bottom level of the DNS hierarchy, the authoritative DNS servers (ADNSes) maintain the actual mapping records and answer the DNS queries. The increasing use of upstream ADNS services (i.e., third-party ADNS-hosting services) and Infrastructure-as-a-Service (IaaS) clouds facilitates the deployment of web services, and has been fostering the evo- lution of the deployment of ADNS servers. to shed light on this trend, we conduct a large-scale measurement to investigate the ADNS deployment patterns of modern web services and examine the characteristics of different deployment styles, such as perfor- mance, life-cycle of servers, and availability. Furthermore, we specifically focus on the DNS deployment for subdomains hosted in IaaS clouds. Then, we examine a pervasive misuse of DNS names and explore a straightforward solution to mitigate the performance penalty in DNS cache. DNS cache plays a critical role in domain name resolution, providing (1) high scalability at Root and Top-level- domain nameservers with reduced workloads and (2) low response latency to clients when the resource records of the queried domains are cached. However, the pervasive misuses of domain names, e.g., the domain names of “one-time-use” pattern, have negative impact on the effectiveness of DNS caching as the cache has been filled with those entries that are highly unlikely to be retrieved. By leveraging the domain name based features that are explicitly available from a domain name itself, we propose simple policies for improving DNS cache performance and validate their efficacy using real traces. Finally, we investigate the security implications of a fundamental vulnerability in DNS- based CDNs. The success of CDNs relies on the mapping system that leverages the dynamically generated DNS records to distribute a client’s request to a proximal server for achieving optimal content delivery. However, the mapping system is vulnerable to malicious hijacks, as it is very difficult to provide pre-computed DNSSEC signatures for dynamically generated records in CDNs. We illustrate that an adversary can deliberately tamper with the resolvers to hijack CDN’s redirection by injecting crafted but legitimate mappings between end-users and edge servers, while remaining undetectable by exist- ing security practices, which can cause serious threats that nullify the benefits offered by CDNs, such as proximal access, load balancing, and DoS protection. We further demonstrate that DNSSEC is ineffective to address this problem, even with the newly adopted ECDSA that is capable of achieving live signing for dynamically generated DNS records. We then discuss countermeasures against this redirection hijacking

    All Your DNS Records Point to Us Understanding the Security Threats of Dangling DNS Records

    Get PDF
    In a dangling DNS record (Dare), the resources pointed to by the DNS record are invalid, but the record itself has not yet been purged from DNS. In this paper, we shed light on a largely overlooked threat in DNS posed by dangling DNS records. Our work reveals that Dare can be easily manipulated by adversaries for domain hijacking. In particular, we identify three attack vectors that an adversary can harness to exploit Dares. In a large-scale measurement study, we uncover 467 exploitable Dares in 277 Alexa top 10,000 domains and 52 edu zones, showing that Dare is a real, prevalent threat. By exploiting these Dares, an adversary can take full control of the (sub) domains and can even have them signed with a Certificate Authority (CA). It is evident that the underlying cause of exploitable Dares is the lack of authenticity checking for the resources to which that DNS record points. We then propose three defense mechanisms to effectively mitigate Dares with little human effort

    Bootstrapping Cryptography on the Internet

    Get PDF
    This thesis focuses on bootstrapping cryptography, taking it from a theoretical algorithm to something we can use on the Internet. We summarize the requirement and define five pillars that build the foundation of successfully deployed cryptographic algorithms: computational performance, usability, transport, key management, and randomness. While there is a lot of research around the computational performance and usability of cryptographic algorithms, we focus on the other pillars. For transport, we explore two obstacles that interfere with the development of practical, real-world secure computation applications. We show the importance of the selection of suitable transport layers. Our evaluations show how Transmission Control Protocol (TCP) does not fully utilize the bandwidth for Two Party Computation (2PC) implementations. We evaluate three transport layers protocols for different applications and show that no protocol is suited for every scenario. In our evaluations, we use various protocols and network conditions in multiple regions to highlight the effects on the performance of 2PC applications. We propose an extendable framework that integrates the (initially) three transport layer protocols: User Datagram Protocol (UDP), TCP, and UDP-based Data Transfer Protocol (UDT). The framework's task is to identify the most suitable transport layer protocol depending on the current TCP application and the network conditions. For key management, we show how to manipulate a domain validation mechanism. We developed a BGP simulator to evaluate BGP paths on the Internet. Our simulator is high performant and respects relationships between CAs. In combination with our simulator, we analyze the resilience of the domains ecosystem to attacks against domain validation. Our measurements show that the domains ecosystem is not resilient to prefix hijacks and reveal that only a few ASes own most domains. We discuss possible mitigations and propose the distributed domain validation as a drop-in replacement for the standard domain validation. It allows strong resistance against MitM attackers. Additionally, we show that many IPs are anycast which is beneficial for distributed domain validation. We also analyze the validations agents' placement on the Internet and demonstrate a method to determine good ASes for agent placement. For randomness, we propose an alternative approach for generating pseudorandom strings, using the distributed nature of the Internet for collecting randomness from public services on the Internet. We develop our Distributed Pseudorandom Generator (DPRG) and demonstrate how it guarantees security against strong practical attackers and how it addresses the main shortcomings in existing PRGs. It uses AES encryption in CBC mode and an HDKF to extract randomness and inputs for handshakes. We analyze the distribution of different randomness sources like HTTP, SMTPS, SSH, and TOR and present an implementation of DPRG using the TOR network. We analyze the quality of randomness and performance of our DPRG and show that we can achieve highly secure randomness only from user space

    A Deep-dive into Cryptojacking Malware: From an Empirical Analysis to a Detection Method for Computationally Weak Devices

    Get PDF
    Cryptojacking is an act of using a victim\u27s computation power without his/her consent. Unauthorized mining costs extra electricity consumption and decreases the victim host\u27s computational efficiency dramatically. In this thesis, we perform an extensive research on cryptojacking malware from every aspects. First, we present a systematic overview of cryptojacking malware based on the information obtained from the combination of academic research papers, two large cryptojacking datasets of samples, and numerous major attack instances. Second, we created a dataset of 6269 websites containing cryptomining scripts in their source codes to characterize the in-browser cryptomining ecosystem by differentiating permissioned and permissionless cryptomining samples. Third, we introduce an accurate and efficient IoT cryptojacking detection mechanism based on network traffic features that achieves an accuracy of 99%. Finally, we believe this thesis will greatly expand the scope of research and facilitate other novel solutions in the cryptojacking domain

    Review and analysis of synthetic diversity for breaking monocultures

    Full text link

    Security Implications of Insecure DNS Usage in the Internet

    Get PDF
    The Domain Name System (DNS) provides domain-to-address lookup-services used by almost all internet applications. Because of this ubiquitous use of the DNS, attacks against the DNS have become more and more critical. However, in the past, studies of DNS security have been mostly conducted against individual protocols and applications. In this thesis, we perform the first comprehensive evaluation of DNS-based attacks against a wide range of internet applications, ranging from time-synchronisation via NTP over internet resource management to security mechanisms. We show how to attack those applications by exploiting various weaknesses in the DNS. These attacks are based on both, already known weaknesses which are adapted to new attacks, as well as previously unknown attack vectors which have been found during the course of this thesis. We evaluate our attacks and provide the first taxonomy of DNS applications, to show how adversaries can systematically develop attacks exploiting the DNS. We analyze the attack surface created by our attacks in the internet and find that a significant number of applications and systems can be attacked. We work together with the developers of the vulnerable applications to develop patches and general countermeasures which can be applied by various parties to block our attacks. We also provide conceptual insights into the root causes allowing our attacks to help with the development of new applications and standards. The findings of this thesis are published in in 4 full-paper publications and 2 posters at international academic conferences. Additionally, we disclose our finding to developers which has lead to the registration of 8 Common Vulnerabilities and Exposures identifiers (CVE IDs) and patches in 10 software implementations. To raise awareness, we also presented our findings at several community meetings and via invited articles

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    A Study of Very Short Intermittent DDoS Attacks on the Performance of Web Services in Clouds

    Get PDF
    Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce are increasing in size, scale, and frequency. The emerging elastic cloud computing cannot defend against ever-evolving new types of DDoS attacks, since they exploit various newly discovered network or system vulnerabilities even in the cloud platform, bypassing not only the state-of-the-art defense mechanisms but also the elasticity mechanisms of cloud computing. In this dissertation, we focus on a new type of low-volume DDoS attack, Very Short Intermittent DDoS Attacks, which can hurt the performance of web applications deployed in the cloud via transiently saturating the critical bottleneck resource of the target systems by means of external attack HTTP requests outside the cloud or internal resource contention inside the cloud. We have explored external attacks by modeling the n-tier web applications with queuing network theory and implementing the attacking framework based-on feedback control theory. We have explored internal attacks by investigating and exploiting resource contention and performance interference to locate a target VM (virtual machine) and degrade its performance
    corecore