6,715 research outputs found

    RoboChain: A Secure Data-Sharing Framework for Human-Robot Interaction

    Full text link
    Robots have potential to revolutionize the way we interact with the world around us. One of their largest potentials is in the domain of mobile health where they can be used to facilitate clinical interventions. However, to accomplish this, robots need to have access to our private data in order to learn from these data and improve their interaction capabilities. Furthermore, to enhance this learning process, the knowledge sharing among multiple robot units is the natural step forward. However, to date, there is no well-established framework which allows for such data sharing while preserving the privacy of the users (e.g., the hospital patients). To this end, we introduce RoboChain - the first learning framework for secure, decentralized and computationally efficient data and model sharing among multiple robot units installed at multiple sites (e.g., hospitals). RoboChain builds upon and combines the latest advances in open data access and blockchain technologies, as well as machine learning. We illustrate this framework using the example of a clinical intervention conducted in a private network of hospitals. Specifically, we lay down the system architecture that allows multiple robot units, conducting the interventions at different hospitals, to perform efficient learning without compromising the data privacy.Comment: 7 pages, 6 figure

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs

    Full text link
    Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.Comment: Submitted to ICRA 202

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Using social cues to estimate possible destinations when driving a robotic wheelchair

    No full text
    International audienceApproaching a group of humans is an important navigation task. Although many methods have been proposed to avoid interrupting groups of people engaged in a conversation, just a few works have considered the proper way of joining those groups. Research in the field of social sciences have proposed geometric models to compute the best points to join a group. In this article we propose a method to use those points as possible destinations when driving a robotic wheelchair. Those points are considered together with other possible destinations in the environment such as points of interest or typical static destinations defined by the user's habits. The intended destination is inferred using a Dynamic Bayesian Network that takes into account the contextual information of the environment and user's orders to compute the probability for each destination

    Considering the Context to Build Theory in HCI, HRI, and HMC: Explicating Differences in Processes of Communication and Socialization with Social Technologies

    Get PDF
    The proliferation and integration of social technologies has occurred quickly, and the specific technologies with which we engage are ever-changing. The dynamic nature of the development and use of social technologies is often acknowledged by researchers as a limitation. In this manuscript, however, we present a discussion on the implications of our modern technological context by focusing on processes of socialization and communication that are fundamentally different from their interpersonal corollary. These are presented and discussed with the goal of providing theoretical building blocks toward a more robust understanding of phenomena of human-computer interaction, human-robot interaction, human-machine communication, and interpersonal communication

    A New Constructivist AI: From Manual Methods to Self-Constructive Systems

    Get PDF
    The development of artificial intelligence (AI) systems has to date been largely one of manual labor. This constructionist approach to AI has resulted in systems with limited-domain application and severe performance brittleness. No AI architecture to date incorporates, in a single system, the many features that make natural intelligence general-purpose, including system-wide attention, analogy-making, system-wide learning, and various other complex transversal functions. Going beyond current AI systems will require significantly more complex system architecture than attempted to date. The heavy reliance on direct human specification and intervention in constructionist AI brings severe theoretical and practical limitations to any system built that way. One way to address the challenge of artificial general intelligence (AGI) is replacing a top-down architectural design approach with methods that allow the system to manage its own growth. This calls for a fundamental shift from hand-crafting to self-organizing architectures and self-generated code – what we call a constructivist AI approach, in reference to the self-constructive principles on which it must be based. Methodologies employed for constructivist AI will be very different from today’s software development methods; instead of relying on direct design of mental functions and their implementation in a cog- nitive architecture, they must address the principles – the “seeds” – from which a cognitive architecture can automatically grow. In this paper I describe the argument in detail and examine some of the implications of this impending paradigm shift

    Lecture on Bayesian Perception & Decision-making for Autonomous Vehicles and Mobile Robots

    Get PDF
    Lecture on Bayesian Perception & Decision-making for Autonomous Vehicles and Mobile Robots Beijing Institute of Technology, Intelligent Vehicle Research Center, May 8th 2017Tutorial on Perception & Decision-making for Autonomous Vehicles and Mobile RobotsNew technologies for Autonomous Vehicles and Mobile Robots will be presented, with an emphasis on multi-sensors Embedded Perception, Situation Awareness, Collision Risk Assessment, and Decision-making for safe navigation in Dynamic Human Environments. It will be shown that Bayesian approaches are mandatory for developing these technologies and for obtaining the required robustness in presence of uncertainty and complex dynamic situations. The talk will be illustrated by some interesting results obtained in the scope of several collaborative projects involving either national research and development institutes such as CEA-LETI and IRT (Technological Research Institute) Nanoelec, or international industrial companies such as Toyota or Renault-Nissan
    corecore