3,224 research outputs found

    Social-aware hybrid mobile offloading

    Get PDF
    Mobile offloading is a promising technique to aid the constrained resources of a mobile device. By offloading a computational task, a device can save energy and increase the performance of the mobile applications. Unfortunately, in existing offloading systems, the opportunistic moments to offload a task are often sporadic and short-lived. We overcome this problem by proposing a social-aware hybrid offloading system (HyMobi), which increases the spectrum of offloading opportunities. As a mobile device is always co- located to at least one source of network infrastructure throughout of the day, by merging cloudlet, device-to-device and remote cloud offloading, we increase the availability of offloading support. Integrating these systems is not trivial. In order to keep such coupling, a strong social catalyst is required to foster user's participation and collaboration. Thus, we equip our system with an incentive mechanism based on credit and reputation, which exploits users' social aspects to create offload communities. We evaluate our system under controlled and in-the-wild scenarios. With credit, it is possible for a device to create opportunistic moments based on user's present need. As a result, we extended the widely used opportunistic model with a long-term perspective that significantly improves the offloading process and encourages unsupervised offloading adoption in the wild

    MADServer: An Architecture for Opportunistic Mobile Advanced Delivery

    Get PDF
    Rapid increases in cellular data traffic demand creative alternative delivery vectors for data. Despite the conceptual attractiveness of mobile data offloading, no concrete web server architectures integrate intelligent offloading in a production-ready and easily deployable manner without relying on vast infrastructural changes to carriers’ networks. Delay-tolerant networking technology offers the means to do just this. We introduce MADServer, a novel DTN-based architecture for mobile data offloading that splits web con- tent among multiple independent delivery vectors based on user and data context. It enables intelligent data offload- ing, caching, and querying solutions which can be incorporated in a manner that still satisfies user expectations for timely delivery. At the same time, it allows for users who have poor or expensive connections to the cellular network to leverage multi-hop opportunistic routing to send and receive data. We also present a preliminary implementation of MADServer and provide real-world performance evaluations

    Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

    Full text link
    Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author
    • …
    corecore