11,706 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Three applications for mobile epidemic algorithms

    Get PDF
    This paper presents a framework for the pervasive sharing of data using wireless networks. 'FarCry' uses the mobility of users to carry files between separated networks. Through a mix of ad-hoc and infrastructure-based wireless networking, files are transferred between users without their direct involvement. As users move to different locations, files are then transmitted on to other users, spreading and sharing information. We examine three applications of this framework. Each of these exploits the physically proximate nature of social gatherings. As people group together in, for example, business meetings and cafés, this can be taken as an indication of similar interests, e.g. in the same presentation or in a type of music. MediaNet affords sharing of media files between strangers or friends, MeetingNet shares business documents in meetings, and NewsNet shares RSS feeds between mobile users. NewsNet also develops the use of pre-emptive caching: collecting information from others not for oneself, but for the predicted later sharing with others. We offer observations on developing this system for a mobile, multi-user, multi-device environment

    Data Dissemination And Information Diffusion In Social Networks

    Get PDF
    Data dissemination problem is a challenging issue in social networks, especially in mobile social networks, which grows rapidly in recent years worldwide with a significant increasing number of hand-on mobile devices such as smart phones and pads. Short-range radio communications equipped in mobile devices enable mobile users to access their interested contents not only from access points of Internet but also from other mobile users. Through proper data dissemination among mobile users, the bandwidth of the short-range communications can be better utilized and alleviate the stress on the bandwidth of the cellular networks. In this dissertation proposal, data dissemination problem in mobile social networks is studied. Before data dissemination emerges in the research of mobile social networks, routing protocol of finding efficient routing path in mobile social networks was the focus, which later became the pavement for the study of the efficient data dissemination. Data dissemination priorities on packet dissemination from multiple sources to multiple destinations while routing protocol simply focus on finding routing path between two ends in the networks. The first works in the literature of data dissemination problem were based on the modification and improvement of routing protocols in mobile social networks. Therefore, we first studied and proposed a prediction-based routing protocol in delay tolerant networks. Delay tolerant network appears earlier than mobile social networks. With respect to delay tolerant networks, mobile social networks also consider social patterns as well as mobility patterns. In our work, we simply come up with the prediction-based routing protocol through analysis of user mobility patterns. We can also apply our proposed protocol in mobile social networks. Secondly, in literature, efficient data dissemination schemes are proposed to improve the data dissemination ratio and with reasonable overhead in the networks. However, the overhead may be not well controlled in the existing works. A social-aware data dissemination scheme is proposed in this dissertation proposal to study efficient data dissemination problem with controlled overhead in mobile social networks. The data dissemination scheme is based on the study on both mobility patterns and social patterns of mobile social networks. Thirdly, in real world cases, an efficient data dissemination in mobile social networks can never be realized if mobile users are selfish, which is true unfortunately in fact. Therefore, how to strengthen nodal cooperation for data dissemination is studied and a credit-based incentive data dissemination protocol is also proposed in this dissertation. Data dissemination problem was primarily researched on mobile social networks. When consider large social networks like online social networks, another similar problem was researched, namely, information diffusion problem. One specific problem is influence maximization problem in online social networks, which maximize the result of information diffusion process. In this dissertation proposal, we proposed a new information diffusion model, namely, sustaining cascading (SC) model to study the influence maximization problem and based on the SC model, we further plan our research work on the information diffusion problem aiming at minimizing the influence diffusion time with subject to an estimated influence coverage

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201
    • …
    corecore