5,383 research outputs found

    Tracking Dengue Epidemics using Twitter Content Classification and Topic Modelling

    Full text link
    Detecting and preventing outbreaks of mosquito-borne diseases such as Dengue and Zika in Brasil and other tropical regions has long been a priority for governments in affected areas. Streaming social media content, such as Twitter, is increasingly being used for health vigilance applications such as flu detection. However, previous work has not addressed the complexity of drastic seasonal changes on Twitter content across multiple epidemic outbreaks. In order to address this gap, this paper contrasts two complementary approaches to detecting Twitter content that is relevant for Dengue outbreak detection, namely supervised classification and unsupervised clustering using topic modelling. Each approach has benefits and shortcomings. Our classifier achieves a prediction accuracy of about 80\% based on a small training set of about 1,000 instances, but the need for manual annotation makes it hard to track seasonal changes in the nature of the epidemics, such as the emergence of new types of virus in certain geographical locations. In contrast, LDA-based topic modelling scales well, generating cohesive and well-separated clusters from larger samples. While clusters can be easily re-generated following changes in epidemics, however, this approach makes it hard to clearly segregate relevant tweets into well-defined clusters.Comment: Procs. SoWeMine - co-located with ICWE 2016. 2016, Lugano, Switzerlan

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end
    • …
    corecore