181 research outputs found

    Human Aware Navigation for Assistive Robotics

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceEnsuring proper living conditions for an ever growing number of elderly people is a significative challenge for many countries. The difficulty and cost of hiring and training specialized personnel has fostered research in assistive robotics as a viable alternative. In this context, an ideally suited and very relevant application is to transport people with reduced mobility. This may involve either autonomous or semi-autonomous transportation devices such as cars and wheelchairs. For a working solution, a number of problems including safety, usability and economic feasibility have to be solved. This paper presents PAL's robotic wheelchair, an experimental platform to study and provide solutions to many of the aforementioned problems

    European regulatory framework for person carrier robots

    Get PDF
    The aim of this paper is to establish the grounds for a future regulatory framework for Person Carrier Robots, which includes legal and ethical aspects. Current industrial standards focus on physical human–robot interaction, i.e. on the prevention of harm. Current robot technology nonetheless challenges other aspects in the legal domain. The main issues comprise privacy, data protection, liability, autonomy, dignity, and ethics. The paper first discusses the need to take into account other interdisciplinary aspects of robot technology to offer complete legal coverage to citizens. As the European Union starts using impact assessment methodology for completing new technologies regulations, a new methodology based on it to approach the insertion of personal care robots will be discussed. Then, after framing the discussion with a use case, analysis of the involved legal challenges will be conducted. Some concrete scenarios will contribute to easing the explanatory analysis

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Combining motion planning with social reward sources for collaborative human-robot navigation task design

    Get PDF
    Across the human history, teamwork is one of the main pillars sustaining civilizations and technology development. In consequence, as the world embraces omatization, human-robot collaboration arises naturally as a cornerstone. This applies to a huge spectrum of tasks, most of them involving navigation. As a result, tackling pure collaborative navigation tasks can be a good first foothold for roboticists in this enterprise. In this thesis, we define a useful framework for knowledge representation in human-robot collaborative navigation tasks and propose a first solution to the human-robot collaborative search task. After validating the model, two derived projects tackling its main weakness are introduced: the compilation of a human search dataset and the implementation of a multi-agent planner for human-robot navigatio

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Towards a Legal end Ethical Framework for Personal Care Robots. Analysis of Person Carrier, Physical Assistant and Mobile Servant Robots.

    Get PDF
    Technology is rapidly developing, and regulators and robot creators inevitably have to come to terms with new and unexpected scenarios. A thorough analysis of this new and continuosuly evolving reality could be useful to better understand the current situation and pave the way to the future creation of a legal and ethical framework. This is clearly a wide and complex goal, considering the variety of new technologies available today and those under development. Therefore, this thesis focuses on the evaluation of the impacts of personal care robots. In particular, it analyzes how roboticists adjust their creations to the existing regulatory framework for legal compliance purposes. By carrying out an impact assessment analysis, existing regulatory gaps and lack of regulatory clarity can be highlighted. These gaps should of course be considered further on by lawmakers for a future legal framework for personal care robot. This assessment should be made first against regulations. If the creators of the robot do not encounter any limitations, they can then proceed with its development. On the contrary, if there are some limitations, robot creators will either (1) adjust the robot to comply with the existing regulatory framework; (2) start a negotiation with the regulators to change the law; or (3) carry out the original plan and risk to be non-compliant. The regulator can discuss existing (or lacking) regulations with robot developers and give a legal response accordingly. In an ideal world, robots are clear of impacts and therefore threats can be responded in terms of prevention and opportunities in form of facilitation. In reality, the impacts of robots are often uncertain and less clear, especially when they are inserted in care applications. Therefore, regulators will have to address uncertain risks, ambiguous impacts and yet unkown effects

    A Survey on Human-aware Robot Navigation

    Full text link
    Intelligent systems are increasingly part of our everyday lives and have been integrated seamlessly to the point where it is difficult to imagine a world without them. Physical manifestations of those systems on the other hand, in the form of embodied agents or robots, have so far been used only for specific applications and are often limited to functional roles (e.g. in the industry, entertainment and military fields). Given the current growth and innovation in the research communities concerned with the topics of robot navigation, human-robot-interaction and human activity recognition, it seems like this might soon change. Robots are increasingly easy to obtain and use and the acceptance of them in general is growing. However, the design of a socially compliant robot that can function as a companion needs to take various areas of research into account. This paper is concerned with the navigation aspect of a socially-compliant robot and provides a survey of existing solutions for the relevant areas of research as well as an outlook on possible future directions.Comment: Robotics and Autonomous Systems, 202

    GENERALIZED PREDICTIVE PLANNING FOR AUTONOMOUS DRIVING IN DYNAMIC ENVIRONMENTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Intention prediction for interactive navigation in distributed robotic systems

    Get PDF
    Modern applications of mobile robots require them to have the ability to safely and effectively navigate in human environments. New challenges arise when these robots must plan their motion in a human-aware fashion. Current methods addressing this problem have focused mainly on the activity forecasting aspect, aiming at improving predictions without considering the active nature of the interaction, i.e. the robot’s effect on the environment and consequent issues such as reciprocity. Furthermore, many methods rely on computationally expensive offline training of predictive models that may not be well suited to rapidly evolving dynamic environments. This thesis presents a novel approach for enabling autonomous robots to navigate socially in environments with humans. Following formulations of the inverse planning problem, agents reason about the intentions of other agents and make predictions about their future interactive motion. A technique is proposed to implement counterfactual reasoning over a parametrised set of light-weight reciprocal motion models, thus making it more tractable to maintain beliefs over the future trajectories of other agents towards plausible goals. The speed of inference and the effectiveness of the algorithms is demonstrated via physical robot experiments, where computationally constrained robots navigate amongst humans in a distributed multi-sensor setup, able to infer other agents’ intentions as fast as 100ms after the first observation. While intention inference is a key aspect of successful human-robot interaction, executing any task requires planning that takes into account the predicted goals and trajectories of other agents, e.g., pedestrians. It is well known that robots demonstrate unwanted behaviours, such as freezing or becoming sluggishly responsive, when placed in dynamic and cluttered environments, due to the way in which safety margins according to simple heuristics end up covering the entire feasible space of motion. The presented approach makes more refined predictions about future movement, which enables robots to find collision-free paths quickly and efficiently. This thesis describes a novel technique for generating "interactive costmaps", a representation of the planner’s costs and rewards across time and space, providing an autonomous robot with the information required to navigate socially given the estimate of other agents’ intentions. This multi-layered costmap deters the robot from obstructing while encouraging social navigation respectful of other agents’ activity. Results show that this approach minimises collisions and near-collisions, minimises travel times for agents, and importantly offers the same computational cost as the most common costmap alternatives for navigation. A key part of the practical deployment of such technologies is their ease of implementation and configuration. Since every use case and environment is different and distinct, the presented methods use online adaptation to learn parameters of the navigating agents during runtime. Furthermore, this thesis includes a novel technique for allocating tasks in distributed robotics systems, where a tool is provided to maximise the performance on any distributed setup by automatic parameter tuning. All of these methods are implemented in ROS and distributed as open-source. The ultimate aim is to provide an accessible and efficient framework that may be seamlessly deployed on modern robots, enabling widespread use of intention prediction for interactive navigation in distributed robotic systems

    A Survey on Socially Aware Robot Navigation: Taxonomy and Future Challenges

    Get PDF
    Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper, we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through the taxonomic review, we discuss the current research directions and the extending scope of applications in various domains. Further, we put forward a list of current research opportunities and present a discussion on possible future challenges that are likely to emerge in the field
    corecore