11,631 research outputs found

    A Cognitive and Affective Architecture for Social Human-Robot Interaction

    No full text
    International audienceRobots show up frequently in new applications in our daily lives where they interact more and more closely with the human user. Despite a long history of research, existing cognitive architectures are still too generic and hence not tailored enough to meet the specific needs demanded by social HRI. In particular, interaction-oriented architectures require handling emotions, language, social norms, etc, which is quite a handful. In this paper, we present an overview of a Cognitive and Affective Interaction-Oriented Architecture for social human-robot interactions abbreviated CAIO. This architecture is parallel to the BDI (Belief, Desire, Intention) architecture that comes from philosophy of actions by Bratman. CAIO integrates complex emotions and planning techniques. It aims to contribute to cognitive architectures for HRI by enabling the robot to reason on mental states (including emotions) of the interlocutors, and to act physically, emotionally and verbally

    Robotic perception and control for a demolition task in unstructured environments

    Get PDF
    The construction industry is a capital-intensive sector that has steadily turned towards mechanized and automated solutions in the last few decades. However, due to some specificities of this field, it is still technologically behind other sectors, like manufacturing: there is room for improvements, that could lead to economical, technical, and also social benefits. In this work we focus on demolition robotics: taking the task of demolishing a wall as a case study (related to the needs of an industrial partner of our laboratory), we propose a mockup for studying perceptual and control aspects on a scaled-down representative scenario. The thesis deals with several aspects of the demolition task, ranging from perception, to planning, to human-robot interaction (HRI). In addition to a conceptual framework, we propose some new approaches to scene segmentation and situational awareness in unstructured environments, as well as an intuitive on-site HRI paradigm

    A Review on Learning Planning Action Models for Socio-Communicative HRI

    No full text
    National audienceFor social robots to be brought more into widespread use in the fields of companionship, care taking and domestic help, they must be capable of demonstrating social intelligence. In order to be acceptable, they must exhibit socio-communicative skills. Classic approaches to program HRI from observed human-human interactions fails to capture the subtlety of multimodal interactions as well as the key structural differences between robots and humans. The former arises due to a difficulty in quantifying and coding mul-timodal behaviours, while the latter due to a difference of the degrees of liberty between a robot and a human. However , the notion of reverse engineering from multimodal HRI traces to learn the underlying behavioral blueprint of the robot given multimodal traces seems an option worth exploring. With this spirit, the entire HRI can be seen as a sequence of exchanges of speech acts between the robot and human, each act treated as an action, bearing in mind that the entire sequence is goal-driven. Thus, this entire interaction can be treated as a sequence of actions propelling the interaction from its initial to goal state, also known as a plan in the domain of AI planning. In the same domain, this action sequence that stems from plan execution can be represented as a trace. AI techniques, such as machine learning , can be used to learn behavioral models (also known as symbolic action models in AI), intended to be reusable for AI planning, from the aforementioned multimodal traces. This article reviews recent machine learning techniques for learning planning action models which can be applied to the field of HRI with the intent of rendering robots as socio-communicative

    An Automated Planning Model for HRI: Use Cases on Social Assistive Robotics

    Get PDF
    Using Automated Planning for the high level control of robotic architectures is becoming very popular thanks mainly to its capability to define the tasks to perform in a declarative way. However, classical planning tasks, even in its basic standard Planning Domain Definition Language (PDDL) format, are still very hard to formalize for non expert engineers when the use case to model is complex. Human Robot Interaction (HRI) is one of those complex environments. This manuscript describes the rationale followed to design a planning model able to control social autonomous robots interacting with humans. It is the result of the authors’ experience in modeling use cases for Social Assistive Robotics (SAR) in two areas related to healthcare: Comprehensive Geriatric Assessment (CGA) and non-contact rehabilitation therapies for patients with physical impairments. In this work a general definition of these two use cases in a unique planning domain is proposed, which favors the management and integration with the software robotic architecture, as well as the addition of new use cases. Results show that the model is able to capture all the relevant aspects of the Human-Robot interaction in those scenarios, allowing the robot to autonomously perform the tasks by using a standard planning-execution architecture.This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116), and grants TIN2017-88476-C2-2-R and RTI2018-099522-B-C43 of FEDER/Ministerio de Ciencia e Innovación-Ministerio de Universidades-Agencia Estatal de Investigación. Javier García is partially supported by the Comunidad de Madrid funds under the project 2016-T2/TIC-1712

    Trust-Based Control of Robotic Manipulators in Collaborative Assembly in Manufacturing

    Get PDF
    Human-robot interaction (HRI) is vastly addressed in the field of automation and manufacturing. Most of the HRI literature in manufacturing explored physical human-robot interaction (pHRI) and invested in finding means for ensuring safety and optimized effort sharing amongst a team of humans and robots. The recent emergence of safe, lightweight, and human-friendly robots has opened a new realm for human-robot collaboration (HRC) in collaborative manufacturing. For such robots with the new HRI functionalities to interact closely and effectively with a human coworker, new human-centered controllers that integrate both physical and social interaction are demanded. Social human-robot interaction (sHRI) has been demonstrated in robots with affective abilities in education, social services, health care, and entertainment. Nonetheless, sHRI should not be limited only to those areas. In particular, we focus on human trust in robot as a basis of social interaction. Human trust in robot and robot anthropomorphic features have high impacts on sHRI. Trust is one of the key factors in sHRI and a prerequisite for effective HRC. Trust characterizes the reliance and tendency of human in using robots. Factors within a robotic system (e.g. performance, reliability, or attribute), the task, and the surrounding environment can all impact the trust dynamically. Over-reliance or under-reliance might occur due to improper trust, which results in poor team collaboration, and hence higher task load and lower overall task performance. The goal of this dissertation is to develop intelligent control algorithms for the manipulator robots that integrate both physical and social HRI factors in the collaborative manufacturing. First, the evolution of human trust in a collaborative robot model is identified and verified through a series of human-in-the-loop experiments. This model serves as a computational trust model estimating an objective criterion for the evolution of human trust in robot rather than estimating an individual\u27s actual level of trust. Second, an HRI-based framework is developed for controlling the speed of a robot performing pick and place tasks. The impact of the consideration of the different level of interaction in the robot controller on the overall efficiency and HRI criteria such as human perceived workload and trust and robot usability is studied using a series of human-in-the-loop experiments. Third, an HRI-based framework is developed for planning and controlling the robot motion in performing hand-over tasks to the human. Again, series of human-in-the-loop experimental studies are conducted to evaluate the impact of implementation of the frameworks on overall efficiency and HRI criteria such as human workload and trust and robot usability. Finally, another framework is proposed for the cooperative manipulation of a common object by a team of a human and a robot. This framework proposes a trust-based role allocation strategy for adjusting the proactive behavior of the robot performing a cooperative manipulation task in HRC scenarios. For the mentioned frameworks, the results of the experiments show that integrating HRI in the robot controller leads to a lower human workload while it maintains a threshold level of human trust in robot and does not degrade robot usability and efficiency

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    Methodology and themes of human-robot interaction: a growing research field

    Get PDF
    Original article can be found at: http://www.intechweb.org/journal.php?id=3 Distributed under the Creative Commons Attribution License. Users are free to read, print, download and use the content or part of it so long as the original author(s) and source are correctly credited.This article discusses challenges of Human-Robot Interaction, which is a highly inter- and multidisciplinary area. Themes that are important in current research in this lively and growing field are identified and selected work relevant to these themes is discussed.Peer reviewe
    corecore