14,853 research outputs found

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    The Price of Anarchy in Cooperative Network Creation Games

    Get PDF
    In general, the games are played on a host graph, where each node is a selfish independent agent (player) and each edge has a fixed link creation cost \alpha. Together the agents create a network (a subgraph of the host graph) while selfishly minimizing the link creation costs plus the sum of the distances to all other players (usage cost). In this paper, we pursue two important facets of the network creation game. First, we study extensively a natural version of the game, called the cooperative model, where nodes can collaborate and share the cost of creating any edge in the host graph. We prove the first nontrivial bounds in this model, establishing that the price of anarchy is polylogarithmic in n for all values of α in complete host graphs. This bound is the first result of this type for any version of the network creation game; most previous general upper bounds are polynomial in n. Interestingly, we also show that equilibrium graphs have polylogarithmic diameter for the most natural range of \alpha (at most n polylg n). Second, we study the impact of the natural assumption that the host graph is a general graph, not necessarily complete. This model is a simple example of nonuniform creation costs among the edges (effectively allowing weights of \alpha and \infty). We prove the first assemblage of upper and lower bounds for this context, stablishing nontrivial tight bounds for many ranges of \alpha, for both the unilateral and cooperative versions of network creation. In particular, we establish polynomial lower bounds for both versions and many ranges of \alpha, even for this simple nonuniform cost model, which sharply contrasts the conjectured constant bounds for these games in complete (uniform) graphs

    The Strategic Justification for BGP

    Get PDF
    The Internet consists of many administrative domains, or \emph{Autonomous Systems} (ASes), each owned by an economic entity (Microsoft, AT\&T, The Hebrew University, etc.). The task of ensuring interconnectivity between ASes, known as \emph{interdomain routing}, is currently handled by the \emph{Border Gateway Protocol} (BGP). ASes are self-interested and might be willing to manipulate BGP for their benefit. In this paper we present the strategic justification for using BGP for interdomain routing in today's Internet: We show that, in the realistic Gao-Rexford setting, BGP is immune to almost all forms of rational manipulation by ASes, and can easily be made immune to all such manipulations. The Gao-Rexford setting is said to accurately depict the current commercial relations between ASes in the Internet. Formally, we prove that a slight modification of BGP is incentive-compatible in \emph{ex-post Nash equilibrium}. Moreover, we show that, if a certain reasonable condition holds, then this slightly modified BGP is also \emph{collusion-proof} in ex-post Nash -- i.e., immune to rational manipulations even by \emph{coalitions} of \emph{any} size. Unlike previous works on achieving incentive-compatibility in interdomain routing, our results \emph{do not require any monetary transfer between ASes} (as is the case in practice). We also strengthen the Gao-Rexford constraints by proving that one of the three constraints can actually be enforced by the rationality of ASes if the two other constraints hold.Networks; Ex post Nash; Routing; rational manipulation; Border Gateway Protocol; Dispute Wheel

    Crux: Locality-Preserving Distributed Services

    Full text link
    Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the network's diameter. Crux is a general framework to build locality-preserving distributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preserving versions of a Memcached distributed cache, a Bamboo distributed hash table, and a Redis publish/subscribe. Our results indicate that Crux is effective and applicable to a variety of existing distributed algorithms.Comment: 11 figure

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
    • …
    corecore