8,696 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Words are Malleable: Computing Semantic Shifts in Political and Media Discourse

    Get PDF
    Recently, researchers started to pay attention to the detection of temporal shifts in the meaning of words. However, most (if not all) of these approaches restricted their efforts to uncovering change over time, thus neglecting other valuable dimensions such as social or political variability. We propose an approach for detecting semantic shifts between different viewpoints--broadly defined as a set of texts that share a specific metadata feature, which can be a time-period, but also a social entity such as a political party. For each viewpoint, we learn a semantic space in which each word is represented as a low dimensional neural embedded vector. The challenge is to compare the meaning of a word in one space to its meaning in another space and measure the size of the semantic shifts. We compare the effectiveness of a measure based on optimal transformations between the two spaces with a measure based on the similarity of the neighbors of the word in the respective spaces. Our experiments demonstrate that the combination of these two performs best. We show that the semantic shifts not only occur over time, but also along different viewpoints in a short period of time. For evaluation, we demonstrate how this approach captures meaningful semantic shifts and can help improve other tasks such as the contrastive viewpoint summarization and ideology detection (measured as classification accuracy) in political texts. We also show that the two laws of semantic change which were empirically shown to hold for temporal shifts also hold for shifts across viewpoints. These laws state that frequent words are less likely to shift meaning while words with many senses are more likely to do so.Comment: In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM2017

    Adaptive Representations for Tracking Breaking News on Twitter

    Full text link
    Twitter is often the most up-to-date source for finding and tracking breaking news stories. Therefore, there is considerable interest in developing filters for tweet streams in order to track and summarize stories. This is a non-trivial text analytics task as tweets are short, and standard retrieval methods often fail as stories evolve over time. In this paper we examine the effectiveness of adaptive mechanisms for tracking and summarizing breaking news stories. We evaluate the effectiveness of these mechanisms on a number of recent news events for which manually curated timelines are available. Assessments based on ROUGE metrics indicate that an adaptive approaches are best suited for tracking evolving stories on Twitter.Comment: 8 Pag

    Time Aware Knowledge Extraction for Microblog Summarization on Twitter

    Full text link
    Microblogging services like Twitter and Facebook collect millions of user generated content every moment about trending news, occurring events, and so on. Nevertheless, it is really a nightmare to find information of interest through the huge amount of available posts that are often noise and redundant. In general, social media analytics services have caught increasing attention from both side research and industry. Specifically, the dynamic context of microblogging requires to manage not only meaning of information but also the evolution of knowledge over the timeline. This work defines Time Aware Knowledge Extraction (briefly TAKE) methodology that relies on temporal extension of Fuzzy Formal Concept Analysis. In particular, a microblog summarization algorithm has been defined filtering the concepts organized by TAKE in a time-dependent hierarchy. The algorithm addresses topic-based summarization on Twitter. Besides considering the timing of the concepts, another distinguish feature of the proposed microblog summarization framework is the possibility to have more or less detailed summary, according to the user's needs, with good levels of quality and completeness as highlighted in the experimental results.Comment: 33 pages, 10 figure

    Do peers see more in a paper than its authors?

    Get PDF
    Recent years have shown a gradual shift in the content of biomedical publications that is freely accessible, from titles and abstracts to full text. This has enabled new forms of automatic text analysis and has given rise to some interesting questions: How informative is the abstract compared to the full-text? What important information in the full-text is not present in the abstract? What should a good summary contain that is not already in the abstract? Do authors and peers see an article differently? We answer these questions by comparing the information content of the abstract to that in citances-sentences containing citations to that article. We contrast the important points of an article as judged by its authors versus as seen by peers. Focusing on the area of molecular interactions, we perform manual and automatic analysis, and we find that the set of all citances to a target article not only covers most information (entities, functions, experimental methods, and other biological concepts) found in its abstract, but also contains 20% more concepts. We further present a detailed summary of the differences across information types, and we examine the effects other citations and time have on the content of citances
    corecore