1,213,770 research outputs found

    Model Checking Social Network Models

    Get PDF
    A social network service is a platform to build social relations among people sharing similar interests and activities. The underlying structure of a social networks service is the social graph, where nodes represent users and the arcs represent the users' social links and other kind of connections. One important concern in social networks is privacy: what others are (not) allowed to know about us. The "logic of knowledge" (epistemic logic) is thus a good formalism to define, and reason about, privacy policies. In this paper we consider the problem of verifying knowledge properties over social network models (SNMs), that is social graphs enriched with knowledge bases containing the information that the users know. More concretely, our contributions are: i) We prove that the model checking problem for epistemic properties over SNMs is decidable; ii) We prove that a number of properties of knowledge that are sound w.r.t. Kripke models are also sound w.r.t. SNMs; iii) We give a satisfaction-preserving encoding of SNMs into canonical Kripke models, and we also characterise which Kripke models may be translated into SNMs; iv) We show that, for SNMs, the model checking problem is cheaper than the one based on standard Kripke models. Finally, we have developed a proof-of-concept implementation of the model-checking algorithm for SNMs.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Jefficiency vs. Efficiency in Social Network Models

    Get PDF
    The mainly used welfare criterion in the social network literature is Bentham´s utilitarian concept. The shortcomings of this concept are well-known. We compare the outcomes of the utilitarian concept with the Nash social welfare function. By using a Taylor approximation we deduce a formula which allows the direct comparison of both concepts. The implications of welfare considerations of important network formation models are evaluated by using the multiplicative concept. We introduce a new symmetric connection model which is related to Nash´s welfare function in the same way as the original model is related to the utilitarian function. Based on the observation that heavy tail distributions like the power law distribution and the Pareto distribution can be explained by multiplicative structures we propose to use multiplicative utility functions in social network models. Furthermore, multiplicative utility and welfare functions together exhibit favorable characteristics both in normative and positive terms. Many empirically observed social networks have structures which are better modelled by multiplicative functions. From the normative perspective, multiplicative functions might be attractive since the Nash product introduces some form of justice.social networks, welfare, efficiency, Nash product, jefficiency, justice

    Modeling social networks from sampled data

    Full text link
    Network models are widely used to represent relational information among interacting units and the structural implications of these relations. Recently, social network studies have focused a great deal of attention on random graph models of networks whose nodes represent individual social actors and whose edges represent a specified relationship between the actors. Most inference for social network models assumes that the presence or absence of all possible links is observed, that the information is completely reliable, and that there are no measurement (e.g., recording) errors. This is clearly not true in practice, as much network data is collected though sample surveys. In addition even if a census of a population is attempted, individuals and links between individuals are missed (i.e., do not appear in the recorded data). In this paper we develop the conceptual and computational theory for inference based on sampled network information. We first review forms of network sampling designs used in practice. We consider inference from the likelihood framework, and develop a typology of network data that reflects their treatment within this frame. We then develop inference for social network models based on information from adaptive network designs. We motivate and illustrate these ideas by analyzing the effect of link-tracing sampling designs on a collaboration network.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS221 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Social Network Privacy Models

    Get PDF
    Privacy is a vital research field for social network (SN) sites (SNS), such as Facebook, Twitter, and Google+, where both the number of users and the number of SN applications are sharply growing. Recently, there has been an exponential increase in user-generated text content, mainly in terms of posts, tweets, reviews, and messages on SN. This increase in textual information introduces many problems related to privacy. Privacy is susceptible to personal behavior due to the shared online data structure of SNS. Therefore, this study will conduct a systematic literature review to identify and discuss the main privacy issues associated with SN, existing privacy models and the limitations and gaps in current research into SN privacy

    Exponential-family Random Network Models

    Full text link
    Random graphs, where the connections between nodes are considered random variables, have wide applicability in the social sciences. Exponential-family Random Graph Models (ERGM) have shown themselves to be a useful class of models for representing com- plex social phenomena. We generalize ERGM by also modeling nodal attributes as random variates, thus creating a random model of the full network, which we call Exponential-family Random Network Models (ERNM). We demonstrate how this framework allows a new formu- lation for logistic regression in network data. We develop likelihood-based inference for the model and an MCMC algorithm to implement it. This new model formulation is used to analyze a peer social network from the National Lon- gitudinal Study of Adolescent Health. We model the relationship between substance use and friendship relations, and show how the results differ from the standard use of logistic regression on network data

    Emergence of social networks via direct and indirect reciprocity

    Get PDF
    Many models of social network formation implicitly assume that network properties are static in steady-state. In contrast, actual social networks are highly dynamic: allegiances and collaborations expire and may or may not be renewed at a later date. Moreover, empirical studies show that human social networks are dynamic at the individual level but static at the global level: individuals' degree rankings change considerably over time, whereas network-level metrics such as network diameter and clustering coefficient are relatively stable. There have been some attempts to explain these properties of empirical social networks using agent-based models in which agents play social dilemma games with their immediate neighbours, but can also manipulate their network connections to strategic advantage. However, such models cannot straightforwardly account for reciprocal behaviour based on reputation scores ("indirect reciprocity"), which is known to play an important role in many economic interactions. In order to account for indirect reciprocity, we model the network in a bottom-up fashion: the network emerges from the low-level interactions between agents. By so doing we are able to simultaneously account for the effect of both direct reciprocity (e.g. "tit-for-tat") as well as indirect reciprocity (helping strangers in order to increase one's reputation). This leads to a strategic equilibrium in the frequencies with which strategies are adopted in the population as a whole, but intermittent cycling over different strategies at the level of individual agents, which in turn gives rise to social networks which are dynamic at the individual level but stable at the network level
    corecore