3,647 research outputs found

    Link Prediction by De-anonymization: How We Won the Kaggle Social Network Challenge

    Full text link
    This paper describes the winning entry to the IJCNN 2011 Social Network Challenge run by Kaggle.com. The goal of the contest was to promote research on real-world link prediction, and the dataset was a graph obtained by crawling the popular Flickr social photo sharing website, with user identities scrubbed. By de-anonymizing much of the competition test set using our own Flickr crawl, we were able to effectively game the competition. Our attack represents a new application of de-anonymization to gaming machine learning contests, suggesting changes in how future competitions should be run. We introduce a new simulated annealing-based weighted graph matching algorithm for the seeding step of de-anonymization. We also show how to combine de-anonymization with link prediction---the latter is required to achieve good performance on the portion of the test set not de-anonymized---for example by training the predictor on the de-anonymized portion of the test set, and combining probabilistic predictions from de-anonymization and link prediction.Comment: 11 pages, 13 figures; submitted to IJCNN'201

    Spectral Graph Forge: Graph Generation Targeting Modularity

    Full text link
    Community structure is an important property that captures inhomogeneities common in large networks, and modularity is one of the most widely used metrics for such community structure. In this paper, we introduce a principled methodology, the Spectral Graph Forge, for generating random graphs that preserves community structure from a real network of interest, in terms of modularity. Our approach leverages the fact that the spectral structure of matrix representations of a graph encodes global information about community structure. The Spectral Graph Forge uses a low-rank approximation of the modularity matrix to generate synthetic graphs that match a target modularity within user-selectable degree of accuracy, while allowing other aspects of structure to vary. We show that the Spectral Graph Forge outperforms state-of-the-art techniques in terms of accuracy in targeting the modularity and randomness of the realizations, while also preserving other local structural properties and node attributes. We discuss extensions of the Spectral Graph Forge to target other properties beyond modularity, and its applications to anonymization

    Anonymizing Social Graphs via Uncertainty Semantics

    Full text link
    Rather than anonymizing social graphs by generalizing them to super nodes/edges or adding/removing nodes and edges to satisfy given privacy parameters, recent methods exploit the semantics of uncertain graphs to achieve privacy protection of participating entities and their relationship. These techniques anonymize a deterministic graph by converting it into an uncertain form. In this paper, we propose a generalized obfuscation model based on uncertain adjacency matrices that keep expected node degrees equal to those in the unanonymized graph. We analyze two recently proposed schemes and show their fitting into the model. We also point out disadvantages in each method and present several elegant techniques to fill the gap between them. Finally, to support fair comparisons, we develop a new tradeoff quantifying framework by leveraging the concept of incorrectness in location privacy research. Experiments on large social graphs demonstrate the effectiveness of our schemes

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application
    corecore