144,655 research outputs found

    Improving data driven decision making through integration of environmental sensing technologies

    Get PDF
    Coastal and estuarine zones contain vital and increasingly exploited resources. Traditional uses in these areas (transport, fishing, tourism) now sit alongside more recent activities (mineral extraction, wind farms). However, protecting the resource base upon which these marine-related economic and social activities depend requires access to reliable and timely data. This requires both acquisition of background (baseline) data and monitoring impacts of resource exploitation on aquatic processes and the environment. Management decisions must be based on analysis of collected data to reduce negative impacts while supporting resource-efficient, environmentally sustainable uses. Multi-modal sensing and data fusion offer attractive possibilities for providing such data in a resource efficient and robust manner. In this paper, we report the results of integrating multiple sensing technologies, including autonomous multi-parameter aquatic sensors with visual sensing systems. By focussing on salinity measurements, water level and freshwater influx into an estuarine system; we demonstrate the potential of modelling and data mining techniques in allowing deployment of fewer sensors, with greater network robustness. Using the estuary of the River Liffey in Dublin, Ireland, as an example, we present the outputs and benefits resulting from fusion of multi-modal sensing technologies to predict and understand freshwater input into estuarine systems and discuss the potential of multi-modal datasets for informed management decisions

    Conceptual Analysis for Timely Social Media-Informed Personalized Recommendations

    Get PDF
    Integrating sensor networks and human social networks can provide rich data for many consumer applications. Conceptual analysis offers a way to reason about real-world concepts, which can assist in discovering hidden knowledge from the fused data. Knowledge discovered from such data can be used to provide mobile users with location-based, personalized and timely recommendations. Taking a multi-tier approach that separates concerns of data gathering, representation, aggregation and analysis, this paper presents a conceptual analysis framework that takes unified aggregated data as an input and generates semantically meaningful knowledge as an output. Preliminary experiments suggest that a fusion of sensor network and social media data improves the overall results compared to using either source of data alone

    Structure-revealing data fusion

    Get PDF
    BACKGROUND: Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors. RESULTS: While the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data. CONCLUSIONS: We have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2105-15-239) contains supplementary material, which is available to authorized users

    Online Social Networks: Measurements, Analysis and Solutions for Mining Challenges

    Get PDF
    In the last decade, online social networks showed enormous growth. With the rise of these networks and the consequent availability of wealth social network data, Social Network Analysis (SNA) led researchers to get the opportunity to access, analyse and mine the social behaviour of millions of people, explore the way they communicate and exchange information. Despite the growing interest in analysing social networks, there are some challenges and implications accompanying the analysis and mining of these networks. For example, dealing with large-scale and evolving networks is not yet an easy task and still requires a new mining solution. In addition, finding communities within these networks is a challenging task and could open opportunities to see how people behave in groups on a large scale. Also, the challenge of validating and optimizing communities without knowing in advance the structure of the network due to the lack of ground truth is yet another challenging barrier for validating the meaningfulness of the resulting communities. In this thesis, we started by providing an overview of the necessary background and key concepts required in the area of social networks analysis. Our main focus is to provide solutions to tackle the key challenges in this area. For doing so, first, we introduce a predictive technique to help in the prediction of the execution time of the analysis tasks for evolving networks through employing predictive modeling techniques to the problem of evolving and large-scale networks. Second, we study the performance of existing community detection approaches to derive high quality community structure using a real email network through analysing the exchange of emails and exploring community dynamics. The aim is to study the community behavioral patterns and evaluate their quality within an actual network. Finally, we propose an ensemble technique for deriving communities using a rich internal enterprise real network in IBM that reflects real collaborations and communications between employees. The technique aims to improve the community detection process through the fusion of different algorithms

    A Data Fusion System to Study Synchronization in Social Activities

    Full text link
    As the world population gets older, the healthcare system must be adapted, among others by providing continuous health monitoring at home and in the city. The social activities have a significant role in everyone health status. Hence, this paper proposes a system to perform a data fusion of signals sampled on several subjects during social activities. This study implies the time synchronization of data coming from several sensors whether these are embedded on people or integrated in the environment. The data fusion is applied to several experiments including physical, cognitive and rest activities, with social aspects. The simultaneous and continuous analysis of four subjects cardiac activity and GPS coordinates provides a new way to distinguish different collaborative activities comparing the measurements between the subjects and along time.Comment: Healthcom 201
    corecore