151,308 research outputs found

    Towards a Set Theoretical Approach to Big Data Analytics

    Get PDF
    Abstract—Formal methods, models and tools for social big data analytics are largely limited to graph theoretical approaches such as social network analysis (SNA) informed by relational sociology. There are no other unified modeling approaches to social big data that integrate the conceptual, formal and software realms. In this paper, we first present and discuss a theory and conceptual model of social data. Second, we outline a formal model based on set theory and discuss the semantics of the formal model with a real-world social data example from Facebook. Third, we briefly present and discuss the Social Data Analytics Tool (SODATO) that realizes the conceptual model in software and provisions social data analysis based on the conceptual and formal models. Fourth and last, based on the formal model and sentiment analysis of text, we present a method for profiling of artifacts and actors and apply this technique to the data analysis of big social data collected from Facebook page of the fast fashion company, H&M

    Pruning based Distance Sketches with Provable Guarantees on Random Graphs

    Full text link
    Measuring the distances between vertices on graphs is one of the most fundamental components in network analysis. Since finding shortest paths requires traversing the graph, it is challenging to obtain distance information on large graphs very quickly. In this work, we present a preprocessing algorithm that is able to create landmark based distance sketches efficiently, with strong theoretical guarantees. When evaluated on a diverse set of social and information networks, our algorithm significantly improves over existing approaches by reducing the number of landmarks stored, preprocessing time, or stretch of the estimated distances. On Erd\"{o}s-R\'{e}nyi graphs and random power law graphs with degree distribution exponent 2<β<32 < \beta < 3, our algorithm outputs an exact distance data structure with space between Θ(n5/4)\Theta(n^{5/4}) and Θ(n3/2)\Theta(n^{3/2}) depending on the value of β\beta, where nn is the number of vertices. We complement the algorithm with tight lower bounds for Erdos-Renyi graphs and the case when β\beta is close to two.Comment: Full version for the conference paper to appear in The Web Conference'1

    Exploratory graph analysis with estimated consumer utilities : a pilot study for uncovering the network dimensionality of iced tea claims

    Get PDF
    Using estimated consumer utilities for 21 different iced tea claims, this study aimed to examine how typical factor extraction approaches, as well as exploratory graph analysis, performed comparatively. Data was collected by an international market research agency on behalf of a consumer goods organization headquartered in a western-culture European country. The conceptual and statistical worth of exploratory graph analysis within the greater consumer beverages context was then evaluated. Exploratory graph analysis was able to reorganize claims into dimensions that were not only in agreement with most other factor extraction methods, but also those which were distinct and conceptually appropriate. Despite achieving such clear theoretical groundwork for future efforts on latent constructs in market research, much was still desired in terms of the statistical fit of this particular iced tea claims model. This provides applied market researchers, as well as social science academics, a unique opportunity to better understand the network dimensionality of products and services using consumer utilities. As such, continuation of this interdisciplinary, original research is highly encouraged.Thesis (M.S.)Department of Educational Psycholog

    Social networks help to infer causality in the tumor microenvironment.

    Get PDF
    BACKGROUND: Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems-such as the tumor microenvironment-where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies. RESULTS: In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature. CONCLUSIONS: This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments

    Disrupted brain gray matter connectome in social anxiety disorder: a novel individualized structural covariance network analysis

    Get PDF
    Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD

    Graph Neural Network-Aided Exploratory Learning for Community Detection with Unknown Topology

    Full text link
    In social networks, the discovery of community structures has received considerable attention as a fundamental problem in various network analysis tasks. However, due to privacy concerns or access restrictions, the network structure is often unknown, thereby rendering established community detection approaches ineffective without costly network topology acquisition. To tackle this challenge, we present META-CODE, a novel end-to-end solution for detecting overlapping communities in networks with unknown topology via exploratory learning aided by easy-to-collect node metadata. Specifically, META-CODE consists of three iterative steps in addition to the initial network inference step: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network. Through comprehensive evaluations using five real-world datasets, we demonstrate that META-CODE exhibits (a) its superiority over benchmark community detection methods, (b) empirical evaluations as well as theoretical findings to see the effectiveness of our node query, (c) the influence of each module, and (d) its computational efficiency.Comment: 15 pages, 8 figures, 5 tables; its conference version was presented at the ACM International Conference on Information and Knowledge Management (CIKM 2022
    corecore