365 research outputs found

    Probing Limits of Information Spread with Sequential Seeding

    Full text link
    We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as large coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding achieves coverage provably better than the single stage based approach using the same number of seeds and node ranking. Finally, we present experimental results showing how single stage and sequential approaches on directed and undirected graphs compare to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic

    Complex influence propagation based on trust-aware dynamic linear threshold models

    Get PDF
    Abstract To properly capture the complexity of influence propagation phenomena in real-world contexts, such as those related to viral marketing and misinformation spread, information diffusion models should fulfill a number of requirements. These include accounting for several dynamic aspects in the propagation (e.g., latency, time horizon), dealing with multiple cascades of information that might occur competitively, accounting for the contingencies that lead a user to change her/his adoption of one or alternative information items, and leveraging trust/distrust in the users' relationships and its effect of influence on the users' decisions. To the best of our knowledge, no diffusion model unifying all of the above requirements has been developed so far. In this work, we address such a challenge and propose a novel class of diffusion models, inspired by the classic linear threshold model, which are designed to deal with trust-aware, non-competitive as well as competitive time-varying propagation scenarios. Our theoretical inspection of the proposed models unveils important findings on the relations with existing linear threshold models for which properties are known about whether monotonicity and submodularity hold for the corresponding activation function. We also propose strategies for the selection of the initial spreaders of the propagation process, for both non-competitive and competitive influence propagation tasks, whose goal is to mimic contexts of misinformation spread. Our extensive experimental evaluation, which was conducted on publicly available networks and included comparison with competing methods, provides evidence on the meaningfulness and uniqueness of our models

    Blocking Negative Influential Node Set in Social Networks: From Host Perspective

    Get PDF
    Nowadays, social networks are considered as the very important medium for the spreading of information, innovations, ideas and influences among individuals. Viral marketing is a most prominent marketing strategy using word-of-mouth advertising in social networks. The key problem with the viral marketing is to find the set of influential users or seeds, who, when convinced to adopt an innovation or idea, shall influence other users in the network, leading to large number of adoptions. In our study, we propose and study the competitive viral marketing problem from the host perspective, where the host of the social network sells the viral marketing campaigns to its customers and keeps control of the allocation of seeds. Seeds are allocated in such a way that it creates the bang for the buck for each company. We propose a new diffusion model considering both negative and positive influences. Moreover, we propose a novel problem, named Blocking Negative Influential Node Set (BNINS) selection problem, to identify the positive node set such that the number of negatively activated nodes is minimized for all competitors. Then we proposed a solution to the BNINS problem and conducted simulations to validate the proposed solution. We also compare our work with the related work to check the performance of BNINS-GREEDY under different metrics and we observed that BNINS-GREEDY outperforms the others\u27 algorithm. For Random Graph, on average, BNINS-GREEDY blocks the negative influence 17.22% more than CLDAG. At the same time, it achieves 7.6% more positive influence propagation than CLDAG

    Identifying Influential Agents In Social Systems

    Get PDF
    This dissertation addresses the problem of influence maximization in social networks. In- fluence maximization is applicable to many types of real-world problems, including modeling contagion, technology adoption, and viral marketing. Here we examine an advertisement domain in which the overarching goal is to find the influential nodes in a social network, based on the network structure and the interactions, as targets of advertisement. The assumption is that advertisement budget limits prevent us from sending the advertisement to everybody in the network. Therefore, a wise selection of the people can be beneficial in increasing the product adoption. To model these social systems, agent-based modeling, a powerful tool for the study of phenomena that are difficult to observe within the confines of the laboratory, is used. To analyze marketing scenarios, this dissertation proposes a new method for propagating information through a social system and demonstrates how it can be used to develop a product advertisement strategy in a simulated market. We consider the desire of agents toward purchasing an item as a random variable and solve the influence maximization problem in steady state using an optimization method to assign the advertisement of available products to appropriate messenger agents. Our market simulation 1) accounts for the effects of group membership on agent attitudes 2) has a network structure that is similar to realistic human systems 3) models inter-product preference correlations that can be learned from market data. The results on synthetic data show that this method is significantly better than network analysis methods based on centrality measures. The optimized influence maximization (OIM) described above, has some limitations. For instance, it relies on a global estimation of the interaction among agents in the network, rendering it incapable of handling large networks. Although OIM is capable of finding the influential nodes in the social network in an optimized way and targeting them for advertising, in large networks, performing the matrix operations required to find the optimized solution is intractable. To overcome this limitation, we then propose a hierarchical influence maximization (HIM) iii algorithm for scaling influence maximization to larger networks. In the hierarchical method the network is partitioned into multiple smaller networks that can be solved exactly with optimization techniques, assuming a generalized IC model, to identify a candidate set of seed nodes. The candidate nodes are used to create a distance-preserving abstract version of the network that maintains an aggregate influence model between partitions. The budget limitation for the advertising dictates the algorithm’s stopping point. On synthetic datasets, we show that our method comes close to the optimal node selection, at substantially lower runtime costs. We present results from applying the HIM algorithm to real-world datasets collected from social media sites with large numbers of users (Epinions, SlashDot, and WikiVote) and compare it with two benchmarks, PMIA and DegreeDiscount, to examine the scalability and performance. Our experimental results reveal that HIM scales to larger networks but is outperformed by degreebased algorithms in highly-connected networks. However, HIM performs well in modular networks where the communities are clearly separable with small number of cross-community edges. This finding suggests that for practical applications it is useful to account for network properties when selecting an influence maximization method

    Influence Analysis for Online Social Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Influence maximisation towards target users and minimal diffusion of information based on information needs

    Get PDF
    Influence maximisation within social network is essential to the modern business. Influence Maximisation Problem (IMP) involves the minimal selection of influencers that leads to maximum contagion while minimizing Diffusion Cost (DC). Previous models of IMP do not consider DC in spreading information towards target users. Furthermore, influencer selection for varying information needs was not considered which leads to influence overlaps and elimination of weak nodes. This study proposes the Information Diffusion towards Target Users (IDTU) algorithm to enhance influencer selection while minimizing the DC. IDTU was developed on greedy approach by using graph sketches to improve the selection of influencers that maximize influence spread to a set of target users. Moreover, the influencer identification based on specific needs was implemented using a General Additive Model on four fundamental centralities. Experimental method was used by employing five social network datasets including Epinions, Wiki-Vote, SlashDot, Facebook and Twitter from Stanford data repository. Evaluation on IDTU was performed against 3 greedy and 6 heuristics benchmark algorithms. IDTU identified all the specified target nodes while lowering the DC by up to 79%. In addition, the influence overlap problem was reduced by lowering up to an average of six times of the seed set size. Results showed that selecting the top influencers using a combination of metrics is effective in minimizing DC and maximizing contagion up to 77% and 32% respectively. The proposed IDTU has been able to maximize information diffusion while minimizing DC. It demonstrates a more balanced and nuanced approach regarding influencer selection. This will be useful for business and social media marketers in leveraging their promotional activities

    Large deviations of cascade processes on graphs

    Full text link
    Simple models of irreversible dynamical processes such as Bootstrap Percolation have been successfully applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing non-typical trajectories, which can be crucial for the understanding of the out-of-equilibrium phenomena, is still considered to be intractable in most cases. Here we introduce an efficient method to find and analyze optimized trajectories of cascade processes. We show that for a wide class of irreversible dynamical rules, this problem can be solved efficiently on large-scale systems

    Blocking negative influential node set in social networks: From host perspective

    Full text link
    corecore