263 research outputs found

    SoS-centric Middleware Services for Interoperability in Smart Cities Systems

    Get PDF
    Modern cities are supported by many IT systems managed by distinct public and private agents. Such legacy systems are often incompatible since, in general, they use old, dependent and nonstandardised technologies. This results in an environment in which there is no interoperability among smart city systems, preventing richer and more interesting applications to be used by citizens, companies, and city administration. An alternative to solve the lack of interoperability is the adoption of a System-of- Systems (SoS) approach. A SoS is a set of independent and heterogeneous constituent systems that interoperate to accomplish a global mission. The collaboration among such constituent systems enables a SoS to offer new functionalities that cannot be provided by any of these systems working as individual entities. The goal of this paper is to propose SoS-centric middleware services to support the management and execution of SoS in Smart Cities environments in a dynamic, transparent and scalable way. The proposed services, once integrated into a smart city platform, support interoperability among different systems operating in a city. Moreover, this paper also presents a motivational case study to make it clear the issues that must be addressed when multiple independent systems are brought together to provide a new Smart City service or application

    A service-oriented middleware for integrated management of crowdsourced and sensor data streams in disaster management

    Get PDF
    The increasing number of sensors used in diverse applications has provided a massive number of continuous, unbounded, rapid data and requires the management of distinct protocols, interfaces and intermittent connections. As traditional sensor networks are error-prone and difficult to maintain, the study highlights the emerging role of “citizens as sensors” as a complementary data source to increase public awareness. To this end, an interoperable, reusable middleware for managing spatial, temporal, and thematic data using Sensor Web Enablement initiative services and a processing engine was designed, implemented, and deployed. The study found that its approach provided effective sensor data-stream access, publication, and filtering in dynamic scenarios such as disaster management, as well as it enables batch and stream management integration. Also, an interoperability analytics testing of a flood citizen observatory highlighted even variable data such as those provided by the crowd can be integrated with sensor data stream. Our approach, thus, offers a mean to improve near-real-time applications

    Fostering IoT service replicability in interoperable urban ecosystems

    Get PDF
    Worldwide cities are involved in a digital transformation phase specially focused on sustainability and improving citizen's quality of life. However, such objectives are hard to achieve if the migration of the urban processes are not performed following a common approach. Under the paradigm of smart city, different Information and Communication Technologies (ICT) have been deployed over urban environments to enable such digital transformation. However, actual implementations differ from one city to another, and even between services within the same city. As a consequence, the deployment of urban services is hindered, since they need to be tailored to each city. In addition, the isolation of urban services obstructs its optimization, since it cannot harness contextual information coming from other services. All in all, it is necessary to implement tools and mechanisms that allow us to ensure that city solutions and their vertical services are interoperable. In order to tackle this issue, different initiatives have proposed architectures that homogenize the interaction with smart cities from different angles. However, so far the compliance with such architectures has not been assessed. Having this in mind, in this work we present a validation framework, developed under the umbrella of the SynchroniCity project, which aims to verify that interfaces and data exposed by cities are aligned with the adopted standards and data models. In this regard, the validation framework presented here is the technical enabler for the creation of an interoperability certi cate for smart cities. To assess the bene ts of the validation framework, we have used it to check the interoperability of 21 smart city deployments worldwide that adhered the SynchroniCity guidelines. Afterwards, during an open call a total number of 37 services have been deployed over such SynchroniCity instances, thus con rming the goodness of uniform and validated smart cities to foster service replicability.This work was supported in part by the European Union’s Horizon 2020 Programme [SynchroniCity (Delivering an IoT enabled Digital Single Market for Europe and Beyond)] under Grant 732240, and in part by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) through the project FIERCE: Future Internet Enabled Resilient smart CitiEs under Grant RTI2018-093475-AI00

    Towards Interoperability of Smart City Data Platforms

    Get PDF
    We present a comprehensive analysis of the literature on interoperability of smart city data platforms in an attempt to conceptualize interoperability approaches. To this end, we propose a taxonomy of said approaches based on four dimensions with three characteristics each. The taxonomy can be used to classify interoperability approaches. We discuss implications for theory and practice and conclude with a first assessment of individual approaches towards their prospect of success

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture

    Interoperability between information systems concerning electronic records of patients

    Get PDF
    The problematic over the interoperation between institutions in underdeveloped countries always presents good opportunities for science to contribute to substantial improvements in the real-world issues. The basic support systems such as the health institutions are among the ones that can most benefit from scientific advances. This paper reports an analysis done over the interoperability between health institutions, specifically regarding the interaction between medical centres and clinical laboratories where the main interoperability instrument is the patient record. This research was validated with a real practical use case that is presented in this paper. In order to make the information stored in different software applications of the national health system (SIS), more specifically in the Dr. Ayres de Menezes hospital, in the country of São Tomé and Príncipe, interoperable with the information systems of the clinical laboratories that support the hospital, two different applications were developed (Patient Management System and Clinical Analysis Laboratory Management System) to implement the interoperability between them. The Patient Management application requests medical exams from your Medical Appointment dashboard. The second application receives the exam request and after exams are processed and validated, the second system sends the result to the requesting application. To make the interoperability service effective, the SOAP protocol was used, which allowed the exchange of information synchronously between these two applications, allowing for faster transactions of patients' pathological data, and greater confidentiality of this same information.info:eu-repo/semantics/acceptedVersio

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture

    The Internet of Simulation: Enabling Agile Model Based Systems Engineering for Cyber-Physical Systems

    Get PDF
    The expansion of the Internet of Things (IoT) has resulted in a complex cyber-physical system of systems that is continually evolving. With ever more complex systems being developed and changed there has been an increasing reliance on simulation as a vital part of the design process. There is also a growing need for simulation integration and co-simulation in order to analyse the complex interactions between system components. To this end we propose that the Internet of Simulation (IoS) as an extension of IoT can be used to meet these needs. The IoS allows for multiple heterogeneous simulations to be integrated together for co-simulation. It's effect on the engineer process is to facilitate agile practices without sacrificing rigour. An Industry 4.0 example case study is provided showing how IoS could be utilized

    Survey on Quality of Observation within Sensor Web Systems

    Get PDF
    The Sensor Web vision refers to the addition of a middleware layer between sensors and applications. To bridge the gap between these two layers, Sensor Web systems must deal with heterogeneous sources, which produce heterogeneous observations of disparate quality. Managing such diversity at the application level can be complex and requires high levels of expertise from application developers. Moreover, as an information-centric system, any Sensor Web should provide support for Quality of Observation (QoO) requirements. In practice, however, only few Sensor Webs provide satisfying QoO support and are able to deliver high-quality observations to end consumers in a specific manner. This survey aims to study why and how observation quality should be addressed in Sensor Webs. It proposes three original contributions. First, it provides important insights into quality dimensions and proposes to use the QoO notion to deal with information quality within Sensor Webs. Second, it proposes a QoO-oriented review of 29 Sensor Web solutions developed between 2003 and 2016, as well as a custom taxonomy to characterise some of their features from a QoO perspective. Finally, it draws four major requirements required to build future adaptive and QoO-aware Sensor Web solutions
    corecore