55 research outputs found

    Planar differential antenna for short-range UWB pulse radar sensor

    Get PDF
    A novel planar differential ultrawideband (UWB) antenna was designed and implemented on low-cost FR4 substrate and characterized experimentally. The dedicated design was motivated by the implementation of a UWB pulse radar sensor obtained by co-integrating a system-on-a-chip UWB pulse radar packaged in QFN32 package with the proposed antenna, one for the transmitter and one for the receiver. The experimental results confirm the predictions obtained by simulations, and the effectiveness of the novel antenna design for the implementation of low-cost short-range pulse radar sensor was validated by field operational tests

    UWB Analog Multiplier in 90nm CMOS SoC Pulse Radar Sensor for Biomedical Applications

    Get PDF
    This thesis reports the description and results of the doctoral research programme in Information Engineering (University of Pisa), carried out in the three years from 2008 to 2010. The doctoral research programme has been originated by the European project ProeTEX aimed at developing a new generation of equipments for the market of emergency operators, like fire-fighters and Civil Protection rescuers. In this context, the multidisciplinary research group originated by the international cooperation of the research groups led by Prof. Danilo De Rossi (University of Pisa, Italy) as for Bio-engineering and Dr. Domenico Zito (University College Cork and Tyndall National Institute, Cork, Ireland) as for Microelectronics, has focused on the implementation of an innovative ultra-wide-band (UWB) pulse radar sensor fully integrated on a single silicon die for non-invasive and contact-less cardio-pulmonary monitoring within a wearable textile sensor platform. The radar sensor is designed to detect the heart and respiratory rates, which can be transmitted to a personal server that coordinates the entire Wireless Body Area Network (WBAN). Such radar sensor should sense the mechanical activity instead of the electrical activity of the heart. UWB bio-sensing allows low risk preliminary monitoring without discomfort since the radar system permits continuous monitoring without requiring any contact with the skin of the patient unlike the traditional technologies (i.e. ultrasounds). In detail, the radar transmits a sequence of extremely short electromagnetic pulses towards the heart and, due to the capability of microwaves to penetrate body tissues, detects the heart wall movement by correlating the echoes reflected with local replicas of the transmitted pulses properly delayed (i.e. time of flight). The specific aim of the doctoral research program has been the design and experimental characterization of the CMOS UWB analog multiplier, which is a crucial circuit in the receiver chain that implements the correlation between the received and amplified echo and the local replica, generated on-chip, of the transmitted pulse. The fully-differential circuit consists of a p-MOSFET common-gate differential pair as input stage for a wideband impedance matching, a p-MOSFET Gilbert’s quad as multiplier stage, and active loads. The circuit has been designed and fabricated in 90nm CMOS. Given the few works on similar analog circuits having inferior performance with respect to those requested, an innovative circuit solution has been identified. Moreover, a novel time-domain metric has been introduced in order to put in evidence the real behaviour of the system that differs from a traditional mixer commonly analyzed using frequency-domain metrics. This new metric, namely Input-Output Energy Ratio (IOER), aims at the optimization of the multiplier circuit design so that the output voltage corresponding to maximum correlation between two input pulses is maximized. The experimental characterization and the comparison with the state of the art have shown that the multiplier exhibits one of the best set of performance available in literature. The novel multiplier has been co-integrated with the other building blocks of the radar. The preliminary experimental characterization of the test-chips carried out by the research group, has demonstrated that the proposed UWB radar sensor works properly. It can detect a reflective target consisting of a half-centimetre-thick board surface (26×26 cm2) covered by aluminium foil, up to a distance of 70 cm. Moreover, it can detect the respiratory rate of a person placed at a distance of 25 cm. This work presents the first implementation, including experimental evidences, of a SoC UWB pulse radar front-end based on a correlation receiver, in 90nm CMOS technology

    Contact and remote breathing rate monitoring techniques: a review

    Get PDF
    ABSTRACT: Breathing rate monitoring is a must for hospitalized patients with the current coronavirus disease 2019 (COVID-19). We review in this paper recent implementations of breathing monitoring techniques, where both contact and remote approaches are presented. It is known that with non-contact monitoring, the patient is not tied to an instrument, which improves patients’ comfort and enhances the accuracy of extracted breathing activity, since the distress generated by a contact device is avoided. Remote breathing monitoring allows screening people infected with COVID-19 by detecting abnormal respiratory patterns. However, non-contact methods show some disadvantages such as the higher set-up complexity compared to contact ones. On the other hand, many reported contact methods are mainly implemented using discrete components. While, numerous integrated solutions have been reported for non-contact techniques, such as continuous wave (CW) Doppler radar and ultrawideband (UWB) pulsed radar. These radar chips are discussed and their measured performances are summarized and compared

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Investigation of an ultra wideband noise sensor for health monitoring

    Get PDF
    Quick on-scene assessment and early intervention is the key to reduce the mortality of stroke and trauma patients, and it is highly desirable to develop ambulance-based diagnostic and monitoring devices in order to provide additional support to the medical personnel. We developed a compact and low cost ultra wideband noise sensor for medical diagnostics and vital sign monitoring in pre-hospital settings. In this work, we demonstrated the functionality of the sensor for respiration and heartbeat monitoring. In the test, metronome was used to manipulate the breathing pattern and the heartbeat rate reference was obtained with a commercial electrocardiogram (ECG) device. With seventeen tests performed for respiration rate detection, sixteen of them were successfully detected. The results also show that it is possible to detect the heartbeat rate accurately with the developed sensor

    Design and Implementation of a Stepped Frequency Continuous Wave Radar System for Biomedical Applications

    Get PDF
    There is a need to detect vital signs of human (e.g., the respiration and heart-beat rate) with noncontact method in a number of applications such as search and rescue operation (e.g. earthquakes, fire), health monitoring of the elderly, performance monitoring of athletes Ultra-wideband radar system can be utilized for noncontact vital signs monitoring and tracking of various human activities of more than one subject. Therefore, a stepped-frequency continuous wave radar (SFCW) system with wideband performance is designed and implemented for Vital signs detection and fall events monitoring. The design of the SFCW radar system is firstly developed using off-the-shelf discrete components. Later, the system is implemented using surface mount components to make it portable with low cost. The measurement result is proved to be accurate for both heart rate and respiration rate detection within ±5% when compared with contact measurements. Furthermore, an electromagnetic model has been developed using a multi-layer dielectric model of the human subject to validate the experimental results. The agreement between measured and simulated results is good for distances up to 2 m and at various subjects’ orientations with respect to the radar, even in the presence of more than one subject. The compressive sensing (CS) technique is utilized to reduce the size of the acquired data to levels significantly below the Nyquist threshold. In our demonstration, we use phase information contained in the obtained complex high-resolution range profile (HRRP) to derive the motion characteristics of the human. The obtained data has been successfully utilized for non-contact walk, fall and limping detection and healthcare monitoring. The effectiveness of the proposed method is validated using measured results

    Bio-Radar Applications for Remote Vital Signs Monitoring

    Get PDF
    Nowadays, most vital signs monitoring techniques used in a medical context and/or daily life routines require direct contact with skin, which can become uncomfortable or even impractical to be used regularly. Radar technology has been appointed as one of the most promising contactless tools to overcome these hurdles. However, there is a lack of studies that cover a comprehensive assessment of this technology when applied in real-world environments. This dissertation aims to study radar technology for remote vital signs monitoring, more specifically, in respiratory and heartbeat sensing. Two off-the-shelf radars, based on impulse radio ultra-wideband and frequency modu lated continuous wave technology, were customized to be used in a small proof of concept experiment with 10 healthy participants. Each subject was monitored with both radars at three different distances for two distinct conditions: breathing and voluntary apnea. Signals processing algorithms were developed to detect and estimate respiratory and heartbeat parameters, assessed using qualitative and quantitative methods. Concerning respiration, a minimum error of 1.6% was found when radar respiratory peaks signals were directly compared with their reference, whereas a minimum mean absolute error of 0.3 RPM was obtained for the respiration rate. Concerning heartbeats, their expression in radar signals was not as clear as the respiration ones, however a minimum mean absolute error of 1.8 BPM for heartbeat was achieved after applying a novel selective algorithm developed to validate if heart rate value was estimated with reliability. The results proved the potential for radars to be used in respiratory and heartbeat contactless sensing, showing that the employed methods can be already used in some mo tionless situations. Notwithstanding, further work is required to improve the developed algorithms in order to obtain more robust and accurate systems.Atualmente, a maioria das técnicas usadas para a monitorização de sinais vitais em contexto médicos e/ou diário requer contacto direto com a pele, o que poderá tornar-se incómodo ou até mesmo inviável em certas situações. A tecnologia radar tem vindo a ser apontada como uma das mais promissoras ferramentas para medição de sinais vitais à distância e sem contacto. Todavia, são necessários mais estudos que permitam avaliar esta tecnologia quando aplicada a situações mais reais. Esta dissertação tem como objetivo o estudo da tecnologia radar aplicada no contexto de medição remota de sinais vitais, mais concretamente, na medição de atividade respiratória e cardíaca. Dois aparelhos radar, baseados em tecnologia banda ultra larga por rádio de impulso e em tecnologia de onda continua modulada por frequência, foram configurados e usados numa prova de conceito com 10 participantes. Cada sujeito foi monitorizado com cada um dos radar em duas situações distintas: respirando e em apneia voluntária. Algorit mos de processamento de sinal foram desenvolvidos para detetar e estimar parâmetros respiratórios e cardíacos, avaliados através de métodos qualitativos e quantitativos. Em relação à respiração, o menor erro obtido foi de 1,6% quando os sinais de radar respiratórios foram comparados diretamente com os sinais de referência, enquanto que, um erro médio absoluto mínimo de 0,3 RPM foi obtido para a estimação da frequência respiratória via radar. A expressão cardíaca nos sinais radar não se revelou tão evidente como a respiratória, no entanto, um erro médio absoluto mínimo de 1,8 BPM foi obtido para a estimação da frequência cardíaca após a aplicação de um novo algoritmo seletivo, desenvolvido para validar a confiança dos valores obtidos. Os resultados obtidos provaram o potencial do uso de radares na medição de atividade respiratória e cardíaca sem contacto, sendo esta tecnologia viável de ser implementada em situações onde não existe muito movimento. Não obstante, os algoritmos desenvolvidos devem ser aperfeiçoados no futuro de forma a obter sistemas mais robustos e precisos

    Design and Implementation of a Low‐Power Wireless Respiration Monitoring Sensor

    Get PDF
    Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit the respiration data wirelessly, a lowpower transmitter design is crucial. This energy constraint motivates the exploration of the design of a duty-cycled transmitter, where the radio is designed to be turned off most of the time and turned on only for a short duration of time. Due to its inherent duty-cycled nature, impulse radio ultra-wideband (IR-UWB) transmitter is an ideal candidate for the implementation of a duty-cycled radio. To achieve better energy efficiency and longer battery lifetime a low-power low-complexity OOK (on-off keying) based impulse radio ultra-wideband (IR-UWB) transmitter is designed and implemented using standard CMOS process. Initial simulation and test results exhibit a promising advancement towards the development of an energy-efficient wireless sensor for monitoring of respiration activities

    Vital Signs Monitoring Based On UWB Radar

    Get PDF
    Contactless detection of human vital sign using radar sensors appears to be a promising technology which integrates communication, biomedicine, computer science etc. The radar-based vital sign detection has been actively investigated in the past decade. Due to the advantages such as wide bandwidth, high resolution, small and portable size etc., ultra-wideband (UWB) radar has received a great deal of attention in the health care field. In this thesis, an X4 series UWB radar developed by Xethru Company is adopted to detect human breathing signals through the radar echo reflected by the chest wall movement caused by breath and heartbeat. The emphasis is placed on the estimation of breathing and heart rate based on several signal processing algorithms. Firstly, the research trend of vital sign detection using radar technology is reviewed, based on which the advantages of contactless detection and UWB radar-based technology are highlighted. Then theoretical basis and core algorithms of radar signals detection are presented. Meanwhile, the detection system based on Xethru UWB radar is introduced. Next, several preprocessing methods including SVD-based clutter and noise removal algorithms, the largest variance-based target detection method, and the autocorrelation-based breathing-like signal identification method are investigated, to extract the significant component containing the vital signs from the received raw radar echo signal. Then the thesis investigates four time-frequency analysis algorithms (fast Fourier transform + band-pass filter (FFT+BPF), empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) and compare their performances in estimating breathing rate (BR) and heart rate (HR) in different application scenarios. A python-based vital signs detection system is designed to implement the above-mentioned preprocessing and BR and HR estimation algorithms, based on which a large number of single target experiments are undertaken to evaluate the four estimation algorithms. Specifically, the single target experiments are divided into simple setup and challenging setup. In the simple setup, testees face to radar and keep normal breathing in an almost stationary posture, while in the challenging setup, the testee is allowed to do more actions, such as site sitting, changing the breathing frequency, deep hold the breathing. It is shown that the FFT+BPF algorithm gives the highest accuracy and the fastest calculation speed under the simple setup, while in a challenging setup, the VMD algorithm has the highest accuracy and the widest applicability. Finally, double targets breathing signal detection at different distances to the radar are undertaken, aiming to observe whether the breathing signals of two targets will interfere with each other. We found that when two objects are not located at the same distance to the radar, the object closer to the radar will not affect the breath detection of the object far from the radar. When the two targets are located at the same distance, the 'Shading effect' appears in the two breathing signals and only VMD algorithm can separate the breathing signals of the targets
    corecore