360 research outputs found

    Snow cover properties and soil moisture derived from GPS signals

    Get PDF

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    (Near) Real-Time Snow Water Equivalent Observation Using GNSS Refractometry and RTKLIB

    Get PDF
    Global navigation satellite system (GNSS) refractometry enables automated and continuous in situ snow water equivalent (SWE) observations. Such accurate and reliable in situ data are needed for calibration and validation of remote sensing data and could enhance snow hydrological monitoring and modeling. In contrast to previous studies which relied on post-processing with the highly sophisticated Bernese GNSS processing software, the feasibility of in situ SWE determination in post-processing and (near) real time using the open-source GNSS processing software RTKLIB and GNSS refractometry based on the biased coordinate Up component is investigated here. Available GNSS observations from a fixed, high-end GNSS refractometry snow monitoring setup in the Swiss Alps are reprocessed for the season 2016/17 to investigate the applicability of RTKLIB in post-processing. A fixed, low-cost setup provides continuous SWE estimates in near real time at a low cost for the complete 2021/22 season. Additionally, a mobile, (near) real-time and low-cost setup was designed and evaluated in March 2020. The fixed and mobile multi-frequency GNSS setups demonstrate the feasibility of (near) real-time SWE estimation using GNSS refractometry. Compared to state-of-the-art manual SWE observations, a mean relative bias below 5% is achieved for (near) real-time and post-processed SWE estimation using RTKLIB

    Snow cover properties and soil moisture derived from GPS signals

    Get PDF

    Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Get PDF
    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N-0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements

    Characteristics and limitations of GPS L1 observations from submerged antennas

    Get PDF
    Observations from a submerged GNSS antenna underneath a snowpack need to be analyzed to investigate its potential for snowpack characterization. The magnitude of the main interaction processes involved in the GPS L1 signal propagation through different layers of snow, ice, or freshwater is examined theoretically in the present paper. For this purpose, the GPS signal penetration depth, attenuation, reflection, refraction as well as the excess path length are theoretically investigated. Liquid water exerts the largest influence on GPS signal propagation through a snowpack. An experiment is thus set up with a submerged geodetic GPS antenna to investigate the influence of liquid water on the GPS observations. The experimental results correspond well with theory and show that the GPS signal penetrates the liquid water up to three centimeters. The error in the height component due to the signal propagation delay in water can be corrected with a newly derived model. The water level above the submerged antenna could also be estimated.ISSN:0949-7714ISSN:1432-139

    GNSS-R as a source of opportunity for remote sensing of the cryosphere

    Get PDF
    This work evaluates the potential use of signals from the Global Navigation Satellite Systems (GNSS) that scatter off the Earth surface for the retrieval of geophysical information from the cryosphere. For this purpose, the present study is based on data collected with a dedicated reflectometry GNSS receiver during two field campaigns, which were focused on two types of characteristic surfaces of the cryosphere: thin sea ice covers and thick dry snow accumulations. During the first experiment, the complete process of formation, evolution and melting of sea ice was monitorized for more than seven months in a bay located in Greenland. This type of ice is typically characterized by its thickness, concentration and roughness. Different observables from GNSS reflections are analyzed to try to infer these properties. The ice thickness is linked to the free-board level, defined as the height of the sea ice surface. Accurate phase altimetry is achieved, showing good agreement with an Arctic tide model. In addition, the long term results of ellipsoidal height retrievals are consistent with the evolution of the ice surface temperature product given by MODIS, which is a key parameter in the rate of growth of sea ice. On the other hand, the presence of salinity in the sea ice modifies its dielectric properties, resulting in different amplitude and phase for the co- and cross-polar components of the complex Fresnel coefficients. The polarimetric measurements obtained show good agreement with visual inspections of ice concentration from an Arctic weather station. Finally, the shape of the reflected signals and its phase dispersion are tested as potential signatures of surface roughness. For comparison, ice charts of the experimental area are employed. In particular, maximums in roughness given by the GNSS observables coincide with fast ice events. Fast ice is defined as ice anchored to the coast, where the tidal movements contribute to the development of strange patterns, cracks, and fissures on its surface, thus consistent with the GNSS-R roughness retrievals. The second experiment took place on Antarctica, monitoring a pristine snow area which is well-known for the calibration of remote sensing instruments. Due to the relative stability of the snow layers, the data acquisition was limited to ten continuous days. Interferometric beats were found after a first analysis of the amplitude from the collected signals, which were consistent with a multipath model where the reflector lies below the surface level. Motivated by these results, a forward model is developed that reconstructs the complex received signal as a sum of a finite number of reflections, coming from different snow layers (a snow density profile obtained from in-situ measurements). The interferometric information is then retrieved from the spectral analysis applied to time series from both real and modeled signals (lag-holograms). We find that the frequency bands predicted by the model are in general consistent with the data and the lag-holograms show repeatability for different days. Then, we attempt a proper inversion of the collected data to determine the dominant layers of the dry snow profile that contribute to L-band reflections, which are related to significant gradients of snow density/permittivity.Aquest treball avalua el possible ús dels senyals dels sistemes mundials de navegació per satèl lit (GNSS) que es reflecteixen a la superfície terrestre, per a l’extracció de la informació geofísica de la criosfera. Amb aquest propòsit, el present estudi es basa en dades recollides amb un reflectòmetre GNSS durant dues campanyes experimentals, centrades en dos tipus de superfícies característiques de la criosfera: cobertes de gel marí i gruixudes acumulacions de neu seca. En el primer experiment, el procés complet de formació, evolució i fusió del gel marí va ser monitoritzat durant més de set mesos a una badia situada a Groenlàndia. Aquest tipus de gel es caracteritza típicament amb el seu gruix, concentració i rugositat. Diferents observables de les reflexions GNSS són analitzats per tractar de fer una estimació d’aquestes propietats. El gruix de gel està relacionat amb el nivell de francbord, que a la seva vegada està relacionat amb l’alçada de la superfície de gel marí. S’ha aconseguit altimetria de fase precisa, que mostra correlació amb un model de marea de l’Àrtic. A més, els resultats a llarg termini de l’alçada elipsoidal segueixen l’evolució de les mesures de temperatura de superfície de gel donades per MODIS. La temperatura és un paràmetre clau en el ritme de creixement del gel marí. Per altra banda, la presència de sal a aquest tipus de gel modifica les seves propietats dielèctriques, el que implica variacions d’amplitud i fase per als coeficients de Fresnel complexos amb polaritzacions oposades. Les mesures polarimètriques obtingudes mostren concordança amb els valors de concentració de gel obtinguts des d’una estació meteorològica propera. Finalment, la forma de la senyal reflectida i la dispersió de la seva fase s’evaluen com a potencials indicadors de la rugositat de superfície. Per a la seva comparació, es fan servir mapes del gel de la zona experimental. En concret, els valors màxims a la rugositat estimada a partir pels observables GNSS coincideixen amb el gel fixe, que es refereix a gel ancorat a la costa, on els moviments de les marees contribueixen al desenvolupament de patrons estranys, esquerdes i fissures en la seva superfície. El segon experiment es va dur a terme a l’Antàrtida, monitoritzant una àrea de neu pristina que és ben coneguda per al calibratge d’instruments de teledetecció. A causa de la relativa estabilitat de les capes de neu, l’adquisició de dades es va limitar a deu dies consecutius. Es van trobar pulsacions interferomètriques a partir d’un primer anàlisi de l’amplitud de les senyals recollides, les quals eren compatibles amb un model de propagació multicamí a on el reflector es troba per sota del nivell de superfície. Com a conseqüència d’aquests resultats, s’ha desenvolupat un model que reconstrueix el senyal complexe rebut com la suma d’un nombre finit de reflexions, procedents de diferents capes de neu (determinat per mesures locals). La informació interferomètrica es recupera després de l’anàlisi espectral aplicat a les sèries temporals tant de les senyals reals, com de les modelades (lag-hologrames). Trobem que les bandes de freqüències predites pel model són en general consistents amb les dades i que els lag-hologrames mostren repetibilitat per dies diferents. Posteriorment, es realitza un anàlisi de les dades recollides per determinar les capes dominants del perfil de neu seca que contribueixen a les reflexions en banda L, i que a la seva vegada, estan relacionades amb gradents significatius de densitat/permitivitat.Este trabajo evalúa el posible uso de las señales de los sistemas globales de navegación por satélite (GNSS) que se reflejan en la superficie terrestre para la extracción de información geofísica de la criosfera. Con este propósito, el presente estudio se basa en datos recogidos con un reflectómetro GNSS durante dos campañas experimentales, centradas en dos tipos de superficies características de la criosfera: capas de hielo marino y gruesas acumulaciones de nieve seca. Durante el primer experimento, el proceso completo de formación, evolución y fusión del hielo marino fue monitorizado durante más de siete meses en una bahía ubicada en Groenlandia. Este tipo de hielo se caracteriza típicamente por su grosor, concentración y rugosidad. Diferentes observables de las reflexiones GNSS son analizados para tratar de estimar dichas propiedades. El espesor de hielo está relacionado con el nivel de francobordo o borda libre, que a su vez está relacionado con la altura de la superficie de hielo marino. Se ha logrado altimetría de fase precisa, mostrando correlación con un modelo de marea del Ártico. Además, los resultados a largo plazo de la altura elipsoidal siguen la evolución de las mediciones de temperatura de superficie de hielo proporcionadas por MODIS. La temperatura es un parámetro clave en el ritmo de crecimiento del hielo marino. Por otro lado, la presencia de sal en este tipo de hielo modifica sus propiedades dieléctricas, lo que implica variaciones en las amplitudes y fases de los coeficientes complejos de Fresnel con polarizaciones opuestas. Los resultados polarimétricos concuerdan con los valores de concentración de hielo obtenidos mediante inspección visual desde una estación meteorológica cercana. Por último, la forma de la señal reflejada y la dispersión de su fase son evaluadas como potenciales indicadores de la rugosidad de superficie. Para su comparación, se emplean mapas del hielo de la zona experimental. En particular, valores máximos de rugosidad estimada por los observables GNSS coinciden con hielo fijo, que se refiere al hielo anclado a la costa, donde los movimientos de las mareas contribuyen al desarrollo de patrones extraños, grietas y fisuras en su superficie. El segundo experimento se llevó a cabo en la Antártida, monitorizando una área de nieve pristina que es bien conocida para la calibración de instrumentos de teledetección. Debido a la relativa estabilidad de las capas de nieve, la adquisición de datos se limitó a diez días consecutivos. Se encontraron pulsaciones interferométricas a partir de un primer análisis de la amplitud de las señales recibidas, las cuales eran compatibles con un modelo de propagación multicamino donde el reflector se encuentra por debajo del nivel de la superficie. Como consecuencia de estos resultados, se ha desarrollado un modelo que reconstruye la señal recibida como la suma de un número finito de reflexiones, procedentes de diferentes capas de nieve (caracterizados por mediciones locales). La información interferométrica se recupera después del análisis espectral aplicado a las series temporales tanto de las señales reales, como de las modeladas (lag-hologramas). Encontramos que las bandas de frecuencias predichas por el modelo son en general consistentes con los datos y que los lag-hologramas muestran repetibilidad para días diferentes. Posteriormente, se realiza un análisis de los datos recogidos para determinar las capas dominantes del perfil de nieve seca que contribuyen a las reflexiones en banda L, y que a su vez, están relacionadas con gradientes significativos de densidad/permitivida
    corecore