1,335 research outputs found

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Comment on Zwally and others (2015)-mass gains of the Antarctic ice sheet exceed losses

    Get PDF
    In their article ‘Mass gains of the Antarctic ice sheet exceed losses’ Zwally and others (2015) choose Vostok Subglacial Lake as an exemplary region to demonstrate their inference of surface height change rates from a portion of the ICESat mission’s laser altimetry data (2003–08). In their appendix, they discuss some of the remarkable differences between their results and those reported by Richter and others (2008, 2013, 2014). However, the selective consideration of our works and the misleading or incorrect interpretation of our results call for clarificationFil: Richter, Andreas Jorg. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Technische Universitaet Dresden; AlemaniaFil: Horwath, M.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani

    Adelgazamiento del glaciar cubierto Horcones Inferior, derivado de mediciones geodésicas mediante el uso de estaciones semicontinuas GNSS, durante un período de cinco estaciones de verano (C° Aconcagua, Argentina)

    Get PDF
    We report on ice movements changes in the Horcones Inferior Glacier (HIG), a major debris-covered glacier located in the southern sector of Mt. Aconcagua, Central Andes of Argentina. The HIG has been characterized by outstanding surge phenomena in the recent past, with the last episode registered in 2003. After a surge episode, the surface becomes highly unstable, with continuous ice degradation. We studied the response of the glacier surface in the post-surge stagnation period, based on six semi-continuous Global Navigation Satellite System (GNSS) stations distributed along the main axis of the glacier. Kinematic GNSS profiles were acquired over the surface, aiming to strengthen the GNSS measurements of elevation change. Our results show a horizontal surface displacement from 0.4 cmd-1 to 2.7 cmd-1, and a 0.8 cmd-1 mean elevation reduction during the 2009-2014 period. GNSS profiles also show a velocity increase, ranging from-1.1 cmd-1 in 2012 to-1.8 cmd-1 in 2013. Changing surface velocities in the HIG may be related to the presence of a thick debris cover, in combination with faster glacier degradation due to thickness loss after the 2003 surge, and glacier-climate interaction.En el presente estudio, se muestran los cambios de movimientos superficiales registrados por el Glaciar Horcones Inferior (GHI) el mayor glaciar cubierto localizado en el sector Sur del C° Aconcagua, Andes Centrales de Argentina. El GHI, se ha caracterizado por experimentar fenómenos de surges en el pasado reciente, cuyo último episodio registrado fue en el año 2003. Después de un episodio de surge, la superficie se comienza a suavizar mediante un continuo proceso de degradación del hielo. En este sentido, se ha estudiado la superficie del glaciar en el período de reposo postsurge, colocando seis estaciones semi continuas GNSS, distribuidas a lo largo del eje central del GHI. Además, perfiles cinemáticos GNSS fueron realizados sobre la superficie, con el objetivo de fortalecer y correlacionar las mediciones GNSS en el cambio de elevación. Los resultados muestran un desplazamiento horizontal de la superficie desde 0.4 cmd-1 a 2.7 cmd-1, y una disminución en el valor de la elevación media de 0.8 cmd-1, durante el período 2009- 2014. Los perfiles cinemáticos GNSS arrojaron un incremento en la velocidad de decrecimiento en elevación desde -1.1 cmd-1 en 2012, a -1.8 cmd-1 en 2013. Cambios en las velocidades superficiales del GHI pueden estar relacionados con la presencia del espesor de la cubierta de detritos, en combinación con la rápida degradación que sufrió el glaciar después del surge de 2003 y también con la interacción del glaciar con el clima.Fil: Lenzano, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Lenzano, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Baron, Jorge Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Lannutti, Esteban Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Durand, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Trombotto, Dario Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin

    GNSS Reflectometry and Remote Sensing: New Objectives and Results

    Full text link
    The Global Navigation Satellite System (GNSS) has been a very powerful and important contributor to all scientific questions related to precise positioning on Earth's surface, particularly as a mature technique in geodesy and geosciences. With the development of GNSS as a satellite microwave (L-band) technique, more and wider applications and new potentials are explored and utilized. The versatile and available GNSS signals can image the Earth's surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. The refracted signals from GNSS Radio Occultation satellites together with ground GNSS observations can provide the high-resolution tropospheric water vapor, temperature and pressure, tropopause parameters and ionospheric total electron content (TEC) and electron density profile as well. The GNSS reflected signals from the ocean and land surface could determine the ocean height, wind speed and wind direction of ocean surface, soil moisture, ice and snow thickness. In this paper, GNSS remote sensing applications in the atmosphere, oceans, land and hydrology are presented as well as new objectives and results discussed.Comment: Advances in Space Research, 46(2), 111-117, 201

    Permafrost degradation at two monitored palsa mires in north-west Finland

    Get PDF
    Palsas and peat plateaus are expected to disappear from many regions, including Finnish Lapland. However, detailed long-term monitoring data of the degradation process on palsas are scarce. Here, we present the results of the aerial photography time series analysis (1959–2021), annual real-time kinematic (RTK) GNSS and active layer monitoring (2007–2021), and annual unoccupied aerial system surveys (2016–2021) at two palsa sites (Peera and Laassaniemi, 68∘ N) located in north-west Finland. We analysed temporal trends of palsa degradation and their relation to climate using linear regression. At both sites, the decrease in palsa area by −77 % to −90 % since 1959 and height by −16 % to −49 % since 2007 indicate substantial permafrost degradation throughout the study periods. The area loss rates are mainly connected to winter air temperature changes at Peera and winter precipitation changes at Laassaniemi. The active layer thickness (ALT) has varied annually between 2007 and 2021 with no significant trend and is related mainly to the number of very warm days during summer, autumn rainfall of previous year, and snow depths at Peera. At Laassaniemi, the ALT is weakly related to climate and has been decreasing in the middle part of the palsa during the past 8 years despite the continuous decrease in palsa volume. Our findings imply that the ALT in the inner parts of palsas do not necessarily reflect the overall permafrost conditions and underline the importance of surface position monitoring alongside the active layer measurements. The results also showed a negative relationship between the ALT and snow cover onset, indicating the complexity of climate–permafrost feedbacks in palsa mires

    GEOMATIC TECHNIQUES FOR THE OPTIMIZATION OF SKI RESOURCES

    Get PDF
    Abstract. Climate change is already affecting the entire world, with extreme weather conditions such as drought, heat waves, heavy rain, floods and landslides becoming more frequent, including Europe. In according to Paris agreement and relative European announcement of Carbon neutrality (by 2050), the saving of water and energy supplies is a fundamental aspect in the management of resources in production, sports, hospitality facilities and so on. Some methodologies for the optimization of the consumption of natural resources are required. This article describes an activity aimed at measuring, monitoring and analysing the thickness of the snowpack on the ski slopes during the winter season to permit a sustainable approach of snowmaking in alpine ski areas . The authors propose a methodology based on the integration of multitemporal surface (ground/snow) survey by Autonomous Aerial Vehicle (AAV) and low cost GNSS receivers mounted on snow groomers for a RTK (Real Time Kinematic) solution. To obtain a complete snow surface digital models with poor detailed images on ski slopes, some pre-processing techniques have been analysed to locally improve contrast and details with a local high pass filtering. The methodology has been employed in two study areas (Limone Piemonte, Prato Nevoso) located in the province of Cuneo, in the southern alpine area of Piedmont

    Geomatic Techniques Applied to the Dynamic Study (2001-2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain)

    Full text link
    During the Little Ice Age (LIA), Corral del Veleta (Sierra Nevada) housed a small glacier of which relict glacial ice and permafrost still remain under packets of ice blocks. Currently, it is considered the southernmost rock glacier in Europe. The analysis and results of monitoring carried out on this rock glacier reveal it to be in an accelerated process of immobilization and that the relict glacial ice blocks and permafrost on which it lies are in a continual process of degradation. The rock glacier was monitored from 2001 to 2019 using diverse geomatic techniques, to which geophysical and thermal techniques were added. The results obtained during the observation period shed light on the dynamic of the rock glacier (morpho-topographic movements and deformations) as well as the physical state of the underlying frozen bodies (volumetric reduction and spatial distribution). The changes observed are related to variations in the dominant high-mountain climate of Sierra Nevada, particularly since the end of the 20th century, the general tendencies of which are increasing temperatures, decreasing annual snowfall, and a shorter duration of snow on the ground

    GEOMATIC TECHNIQUES FOR THE OPTIMIZATION OF SKI RESOURCES

    Get PDF
    Climate change is already affecting the entire world, with extreme weather conditions such as drought, heat waves, heavy rain, floods and landslides becoming more frequent, including Europe. In according to Paris agreement and relative European announcement of Carbon neutrality (by 2050), the saving of water and energy supplies is a fundamental aspect in the management of resources in production, sports, hospitality facilities and so on. Some methodologies for the optimization of the consumption of natural resources are required. This article describes an activity aimed at measuring, monitoring and analysing the thickness of the snowpack on the ski slopes during the winter season to permit a sustainable approach of snowmaking in alpine ski areas . The authors propose a methodology based on the integration of multitemporal surface (ground/snow) survey by Autonomous Aerial Vehicle (AAV) and low cost GNSS receivers mounted on snow groomers for a RTK (Real Time Kinematic) solution. To obtain a complete snow surface digital models with poor detailed images on ski slopes, some pre-processing techniques have been analysed to locally improve contrast and details with a local high pass filtering. The methodology has been employed in two study areas (Limone Piemonte, Prato Nevoso) located in the province of Cuneo, in the southern alpine area of Piedmont

    Long-term monitoring of landfast sea ice extent and thickness in Kongsfjorden, and related applications (FastIce)

    Get PDF
    Landfast sea ice covers the inner parts of Kongsfjorden, Svalbard, for a limited time in winter and spring months, being an important feature for the physical and biological fjord systems. Systematic fast-ice monitoring for Kongsfjorden, as a part of a long-term project at the Norwegian Polar Institute (NPI) was started in 2003, with some more sporadic observations from 1997 to 2002. It includes the ice extent mapping and in situ measurements of ice and snow thickness, and freeboard at several sites in the fjord. The permanent presence of NPI personnel in Ny-Ålesund Research Station enables regular in situ fast-ice thickness measurements as long as the fast ice is accessible. Further, daily visits to the observatory on the mountain Zeppelinfjellet close to Ny-Ålesund, allow regular ice extent observations (weather, visibility, and daylight permitting). Data collected within this standardized monitoring programme have contributed to a number of studies. Monitoring of the sea-ice conditions in Kongsfjorden can be used to demonstrate and investigate phenomena related to climate change in the Arctic
    corecore