9 research outputs found

    Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarctica: preliminary results of the 2015-2019 PERMASNOW project

    Get PDF
    Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data from our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.info:eu-repo/semantics/publishedVersio

    Empirical models for estimating air temperature using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016

    Get PDF
    In this article, we present empirical models for estimating daily mean air temperature (Ta) in the Hurd Peninsula of Livingston Island (Antarctica) using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) data and spatiotemporal variables. The models were obtained and validated using the daily mean Ta from three Spanish in situ meteorological stations (AEMET stations), Juan Carlos I (JCI), Johnsons Glacier (JG), and Hurd Glacier (HG), and three stations in our team’s monitoring sites, Incinerador (INC), Reina Sofía (SOF), and Collado Ramos (CR), as well as daytime and nighttime Terra-MODIS LST and Aqua-MODIS LST data between 2000 and 2016. Two types of multiple linear regression (MLR) models were obtained: models for each individual station (for JCI, INC, SOF, and CR—not for JG and HG due to a lack of data) and global models using all stations. In the study period, the JCI and INC stations were relocated, so we analyzed the data from both locations separately (JCI1 and JCI2; INC1 and INC2). In general, the best individual Ta models were obtained using daytime Terra LST data, the best results for CR being followed by JCI2, SOF, and INC2 (R2 = 0.5–0.7 and RSE = 2 °C). Model cross validation (CV) yielded results similar to those of the models (for the daytime Terra LST data: R2CV = 0.4–0.6, RMSECV = 2.5–2.7 °C, and bias = −0.1 to 0.1 °C). The best global Ta model was also obtained using daytime Terra LST data (R2 = 0.6 and RSE = 2 °C; in its validation: R2CV = 0.5, RMSECV = 3, and bias = −0.03), along with the significant (p < 0.05) variables: linear time (t) and two time harmonics (sine-cosine), distance to the coast (d), slope (s), curvature (c), and hour of LST observation (H). Ta and LST data were carefully corrected and filtered, respectively, prior to its analysis and comparison. The analysis of the Ta time series revealed different cooling/warming trends in the locations, indicating a complex climatic variability at a spatial scale in the Hurd Peninsula. The variation of Ta in each station was obtained by the Locally Weighted Regression (LOESS) method. LST data that was not “good quality” usually underestimated Ta and were filtered, which drastically reduced the LST data (<5% of the studied days). Despite the shortage of “good” MODIS LST data in these cold environments, all months were represented in the final dataset, demonstrating that the MODIS LST data, through the models obtained in this article, are useful for estimating long-term trends in Ta and generating mean Ta maps at a global level (1 km2 spatial resolution) in the Hurd Peninsula of Livingston Island

    Spatio-temporal variability in Southern Hemisphere glacier snowline altitudes from 2000-2020

    Get PDF
    The glacierised Southern Hemisphere is vulnerable to continued shrinkage under climate change, but representation of these mountainous regions in climate research is limited by hemispheric and altitudinal scarcity of meteorological observations. End-of-summer snowline altitude (SLAEOS) indicates glacier response to climatic forcing, though has been estimated with low spatio-temporal coverage for the Southern Hemisphere. This study presents the first Southern Hemisphere-wide quantification of SLAEOS, with analysis of regional and intra-regional trends. An automated approach was implemented in Google Earth Engine, in which glacier snow cover was classified in Landsat scenes using Otsu image segmentation and SLAEOS was estimated as the lowest altitude from which snow cover ratio was continuously > 0.5. Results encompassed 6485 glaciers of the Southern Alps, Andes, and Antarctic Peninsula, with trends calculated from 2000-2020. Snowlines underwent widespread retreat in this period; mean rates of SLAEOS rise were between 2.19 and 6.28 m yr-1 for regions, between 1.63 and 7.55 m yr-1 for east/west sub-regions, and were mostly accelerated for the recent decade (2010-2020). Mean SLAEOS lowering (-30 to -1 m yr-1) indicated stability in the southernmost Andes, contrasting to rapid SLAEOS rise (10 to 30 m yr-1) in the southern Central Chilean Andes, and eastern slopes generally experienced increased rates of SLAEOS rise compared to western slopes. SLAEOS variability was reflected in periods of summer warming and reductions in summer snowfall, though correlation with these variables was not consistently identified. East-west and north-south disparities in absolute SLAEOS and rates of SLAEOS change were linked to spatial variability in terrain elevation and prevailing moisture transport, with the latter evidencing the variability and impact of large-scale climatic modes. Given implications of observed trends for glacier mass loss, continued research may involve developing an annually-updated global dataset, investigating additional drivers of SLAEOS variability, and estimating glacier response times

    Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica

    No full text
    The aim of this work is to investigate whether snow albedo seasonality and trend under all sky conditions at Johnsons Glacier (Livingston Island, Antarctica) can be tracked using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow albedo daily product MOD10A1. The time span is from December 2006 to February 2015. As the MOD10A1 snow albedo product has never been used in Antarctica before, we also assess the performance for the MOD10A1 cloud mask. The motivation for this work is the need for a description of snow albedo under all sky conditions (including overcast days) using satellite data with mid-spatial resolution. In-situ albedo was filtered with a 5-day windowed moving average, while the MOD10A1 data were filtered using a maximum filter. Both in-situ and MOD10A1 data follow an exponential decay during the melting season, with a maximum decay of 0.049/0.094 day&minus;1 (in-situ/MOD10A1) for the 2006&ndash;2007 season and a minimum of 0.016/0.016 day&minus;1 for the 2009&ndash;2010 season. The duration of the decay varies from 85 days (2007&ndash;2008) to 167 days (2013&ndash;2014). Regarding the albedo trend, both data sets exhibit a slight increase of albedo, which may be explained by an increase of snowfall along with a decrease of snowmelt in the study area. Annual albedo increases of 0.2% and 0.7% are obtained for in-situ and MOD10A1 data, respectively, which amount to respective increases of 2% and 6% in the period 2006&ndash;2015. We conclude that MOD10A1 can be used to characterize snow albedo seasonality and trend on Livingston Island when filtered with a maximum filter
    corecore