23 research outputs found

    수면 호흡음을 이용한 폐쇄성 수면 무호흡 중증도 분류

    Get PDF
    학위논문 (박사)-- 서울대학교 융합과학기술대학원 융합과학부, 2017. 8. 이교구.Obstructive sleep apnea (OSA) is a common sleep disorder. The symptom has a high prevalence and increases mortality as a risk factor for hypertension and stroke. Sleep disorders occur during sleep, making it difficult for patients to self-perceive themselves, and the actual diagnosis rate is low. Despite the existence of a standard sleep study called a polysomnography (PSG), it is difficult to diagnose the sleep disorders due to complicated test procedures and high medical cost burdens. Therefore, there is an increasing demand for an effective and rational screening test that can determine whether or not to undergo a PSG. In this thesis, we conducted three studies to classify the snoring sounds and OSA severity using only breathing sounds during sleep without additional biosensors. We first identified the classification possibility of snoring sounds related to sleep disorders using the features based on the cyclostationary analysis. Then, we classified the patients OSA severity with the features extracted using temporal and cyclostationary analysis from long-term sleep breathing sounds. Finally, the partial sleep sound extraction, and feature learning process using a convolutional neural network (CNN, or ConvNet) were applied to improve the efficiency and performance of previous snoring sound and OSA severity classification tasks. The sleep breathing sound analysis method using a CNN showed superior classification accuracy of more than 80% (average area under curve > 0.8) in multiclass snoring sounds and OSA severity classification tasks. The proposed analysis and classification method is expected to be used as a screening tool for improving the efficiency of PSG in the future customized healthcare service.Chapter 1. Introduction ................................ .......................1 1.1 Personal healthcare in sleep ................................ ..............1 1.2 Existing approaches and limitations ....................................... 9 1.3 Clinical information related to SRBD ................................ .. ..12 1.4 Study objectives ................................ .........................16 Chapter 2. Overview of Sleep Research using Sleep Breathing Sounds ........... 23 2.1 Previous goals of studies ................................ ................23 2.2 Recording environments and related configurations ........................ 24 2.3 Sleep breathing sound analysis ................................ ...........27 2.4 Sleep breathing sound classification ..................................... 35 2.5 Current limitations ................................ ......................36 Chapter 3. Multiple SRDB-related Snoring Sound Classification .................39 3.1 Introduction ................................ .............................39 3.2 System architecture ................................ ......................41 3.3 Evaluation ................................ ...............................52 3.4 Results ................................ ..................................55 3.5 Discussion ................................ ...............................59 3.6 Summary ................................ ..................................63 Chapter 4. Patients OSA Severity Classification .............................65 4.1 Introduction ................................ .............................65 4.2 Existing Approaches ................................ ......................69 4.3 System Architecture ................................ ......................70 4.4 Evaluation ................................ ...............................85 4.5 Results ................................ ..................................87 4.6 Discussion ................................ ...............................94 4.7 Summary ................................ ..................................97 Chapter 5. Patient OSA Severity Prediction using Deep Learning Techniques .....99 5.1 Introduction ................................ .............................99 5.2 Methods ................................ ..................................101 5.3 Results ................................ ..................................109 5.4 Discussion ................................ ...............................115 5.5 Summary ................................ ..................................118 Chapter 6. Conclusions and Future Work ........................................120 6.1 Conclusions ................................ ..............................120 6.2 Future work ................................ ..............................127Docto

    Pattern recognition applied to airflow recordings to help in sleep Apnea-Hypopnea Syndrome diagnosis

    Get PDF
    El Síndrome de la Apnea Hipopnea del Sueño (SAHS) es un trastorno caracterizado por pausas respiratorias durante el sueño. Se considera un grave problema de salud que afecta muy negativamente a la calidad de vida y está relacionada con las principales causas de mortalidad, como los accidentes cardiovasculares y cerebrovasculares. A pesar de su elevada prevalencia (2–7%) se considera una enfermedad infradiagnosticada. El diagnóstico estándar se realiza mediante polisomnografía (PSG) nocturna, que es un método complejo y de alto coste. Estas limitaciones han originado largas listas de espera. Esta Tesis Doctoral tiene como principal objetivo simplificar la metodología de diagnóstico del SAHS . Para ello, se propone el análisis exhaustivo de la señal de flujo aéreo monocanal. La metodología propuesta se basa en tres fases (i) extracción de características, (ii) selección de características, y (iii) procesado de la señal mediante métodos de reconocimiento de patrones. Los resultados obtenidos muestran un alto rendimiento diagnóstico de la propuesta tanto en la detección como en la determinación del grado de severidad del SAHS. Por ello, la principal conclusión de la Tesis Doctoral es que los métodos de reconocimiento automático de patrones aplicados sobre la señal de flujo aéreo monocanal resultan de utilidad para reducir la complejidad del proceso de diagnóstico del SAHS.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemátic

    Non-Contact Sleep Monitoring

    Get PDF
    "The road ahead for preventive medicine seems clear. It is the delivery of high quality, personalised (as opposed to depersonalised) comprehensive medical care to all." Burney, Steiger, and Georges (1964) This world's population is ageing, and this is set to intensify over the next forty years. This demographic shift will result in signicant economic and societal burdens (partic- ularly on healthcare systems). The instantiation of a proactive, preventative approach to delivering healthcare is long recognised, yet is still proving challenging. Recent work has focussed on enabling older adults to age in place in their own homes. This may be realised through the recent technological advancements of aordable healthcare sen- sors and systems which continuously support independent living, particularly through longitudinally monitoring deviations in behavioural and health metrics. Overall health status is contingent on multiple factors including, but not limited to, physical health, mental health, and social and emotional wellbeing; sleep is implicitly linked to each of these factors. This thesis focusses on the investigation and development of an unobtrusive sleep mon- itoring system, particularly suited towards long-term placement in the homes of older adults. The Under Mattress Bed Sensor (UMBS) is an unobstrusive, pressure sensing grid designed to infer bed times and bed exits, and also for the detection of development of bedsores. This work extends the capacity of this sensor. Specically, the novel contri- butions contained within this thesis focus on an in-depth review of the state-of-the-art advances in sleep monitoring, and the development and validation of algorithms which extract and quantify UMBS-derived sleep metrics. Preliminary experimental and community deployments investigated the suitability of the sensor for long-term monitoring. Rigorous experimental development rened algorithms which extract respiration rate as well as motion metrics which outperform traditional forms of ambulatory sleep monitoring. Spatial, temporal, statistical and spatiotemporal features were derived from UMBS data as a means of describing movement during sleep. These features were compared across experimental, domestic and clinical data sets, and across multiple sleeping episodes. Lastly, the optimal classier (built using a combina- tion of the UMBS-derived features) was shown to infer sleep/wake state accurately and reliably across both younger and older cohorts. Through long-term deployment, it is envisaged that the UMBS-derived features (in- cluding spatial, temporal, statistical and spatiotemporal features, respiration rate, and sleep/wake state) may be used to provide unobtrusive, continuous insights into over- all health status, the progression of the symptoms of chronic conditions, and allow the objective measurement of daily (sleep/wake) patterns and routines

    Diseño y evaluación de metodologías de análisis automático de la oximetría nocturna como método simplificado de detección del síndrome de apnea-hipopnea obstructiva del sueño en niños. Validación en el hospital y en el domicilio.

    Get PDF
    El síndrome de apnea-hipopnea obstructiva del sueño (SAHOS) es una enfermedad de alta prevalencia en la población infantil, con una importante morbilidad y elevado impacto sociosanitario, en la que la detección precoz es esencial para iniciar un adecuado tratamiento, el cual debe ser siempre individualizado. El SAHOS es una alteración fisiopatológica compleja y multifactorial, en la que no sólo influye una susceptibilidad genética e individual (factores anatómicos y dinámicos), sino también de estilo de vida. Los factores de riesgo más frecuentes son la hipertrofia adenoamigdalar y la obesidad. Los síntomas en los niños son escasos, son principalmente nocturnos y requieren un alto nivel de sospecha. El SAHOS no diagnosticado o no tratado se relaciona con diferentes consecuencias metabólicas, cardiovasculares, neurocognitivas, inflamatorias, conductuales y falta de desarrollo estaturoponderal, lo que conduce a un empeoramiento del estado de salud en términos generales y disminución de calidad de vida.Departamento de Anatomía y RadiologíaDoctorado en Investigación en Ciencias de la Salu

    Robust Audio and WiFi Sensing via Domain Adaptation and Knowledge Sharing From External Domains

    Get PDF
    Recent advancements in machine learning have initiated a revolution in embedded sensing and inference systems. Acoustic and WiFi-based sensing and inference systems have enabled a wide variety of applications ranging from home activity detection to health vitals monitoring. While many existing solutions paved the way for acoustic event recognition and WiFi-based activity detection, the diverse characteristics in sensors, systems, and environments used for data capture cause a shift in the distribution of data and thus results in sub-optimal classification performance when the sensor and environment discrepancy occurs between training and inference stage. Moreover, large-scale acoustic and WiFi data collection is non-trivial and cumbersome. Therefore, current acoustic and WiFi-based sensing systems suffer when there is a lack of labeled samples as they only rely on the provided training data. In this thesis, we aim to address the performance loss of machine learning-based classifiers for acoustic and WiFi-based sensing systems due to sensor and environment heterogeneity and lack of labeled examples. We show that discovering latent domains (sensor type, environment, etc.) and removing domain bias from machine learning classifiers make acoustic and WiFi-based sensing robust and generalized. We also propose a few-shot domain adaptation method that requires only one labeled sample for a new domain that relieves the users and developers from the painstaking task of data collection at each new domain. Furthermore, to address the lack of labeled examples, we propose to exploit the information or learned knowledge from sources where available data already exists in volumes, such as textual descriptions and visual domain. We implemented our algorithms in mobile and embedded platforms and collected data from participants to evaluate our proposed algorithms and frameworks in an extensive manner.Doctor of Philosoph

    Video-based Bed Monitoring

    Get PDF

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images

    Computer audition for emotional wellbeing

    Get PDF
    This thesis is focused on the application of computer audition (i. e., machine listening) methodologies for monitoring states of emotional wellbeing. Computer audition is a growing field and has been successfully applied to an array of use cases in recent years. There are several advantages to audio-based computational analysis; for example, audio can be recorded non-invasively, stored economically, and can capture rich information on happenings in a given environment, e. g., human behaviour. With this in mind, maintaining emotional wellbeing is a challenge for humans and emotion-altering conditions, including stress and anxiety, have become increasingly common in recent years. Such conditions manifest in the body, inherently changing how we express ourselves. Research shows these alterations are perceivable within vocalisation, suggesting that speech-based audio monitoring may be valuable for developing artificially intelligent systems that target improved wellbeing. Furthermore, computer audition applies machine learning and other computational techniques to audio understanding, and so by combining computer audition with applications in the domain of computational paralinguistics and emotional wellbeing, this research concerns the broader field of empathy for Artificial Intelligence (AI). To this end, speech-based audio modelling that incorporates and understands paralinguistic wellbeing-related states may be a vital cornerstone for improving the degree of empathy that an artificial intelligence has. To summarise, this thesis investigates the extent to which speech-based computer audition methodologies can be utilised to understand human emotional wellbeing. A fundamental background on the fields in question as they pertain to emotional wellbeing is first presented, followed by an outline of the applied audio-based methodologies. Next, detail is provided for several machine learning experiments focused on emotional wellbeing applications, including analysis and recognition of under-researched phenomena in speech, e. g., anxiety, and markers of stress. Core contributions from this thesis include the collection of several related datasets, hybrid fusion strategies for an emotional gold standard, novel machine learning strategies for data interpretation, and an in-depth acoustic-based computational evaluation of several human states. All of these contributions focus on ascertaining the advantage of audio in the context of modelling emotional wellbeing. Given the sensitive nature of human wellbeing, the ethical implications involved with developing and applying such systems are discussed throughout

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity
    corecore