1,033 research outputs found

    Dynamics of Snoring Sounds and Its Connection with Obstructive Sleep Apnea

    Get PDF
    Snoring is extremely common in the general population and when irregular may indicate the presence of obstructive sleep apnea. We analyze the overnight sequence of wave packets --- the snore sound --- recorded during full polysomnography in patients referred to the sleep laboratory due to suspected obstructive sleep apnea. We hypothesize that irregular snore, with duration in the range between 10 and 100 seconds, correlates with respiratory obstructive events. We find that the number of irregular snores --- easily accessible, and quantified by what we call the snore time interval index (STII) --- is in good agreement with the well-known apnea-hypopnea index, which expresses the severity of obstructive sleep apnea and is extracted only from polysomnography. In addition, the Hurst analysis of the snore sound itself, which calculates the fluctuations in the signal as a function of time interval, is used to build a classifier that is able to distinguish between patients with no or mild apnea and patients with moderate or severe apnea

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Entropy analysis of acoustic signals recorded with a smartphone for detecting apneas and hypopneas: A comparison with a commercial system for home sleep apnea diagnosis

    Get PDF
    Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Here we propose analyzing smartphone audio signals for screening OSA patients at home. Our objectives were to: (1) develop an algorithm for detecting silence events and classifying them into apneas or hypopneas; (2) evaluate the performance of this system; and (3) compare the information provided with a type 3 portable sleep monitor, based mainly on nasal airflow. Overnight signals were acquired simultaneously by both systems in 13 subjects (3 healthy subjects and 10 OSA patients). The sample entropy of audio signals was used to identify apnea/hypopnea events. The apnea-hypopnea indices predicted by the two systems presented a very high degree of concordance and the smartphone correctly detected and stratified all the OSA patients. An event-by-event comparison demonstrated good agreement between silence events and apnea/hypopnea events in the reference system (Sensitivity = 76%, Positive Predictive Value = 82%). Most apneas were detected (89%), but not so many hypopneas (61%). We observed that many hypopneas were accompanied by snoring, so there was no sound reduction. The apnea/hypopnea classification accuracy was 70%, but most discrepancies resulted from the inability of the nasal cannula of the reference device to record oral breathing. We provided a spectral characterization of oral and nasal breathing to correct this effect, and the classification accuracy increased to 82%. This novel knowledge from acoustic signals may be of great interest for clinical practice to develop new non-invasive techniques for screening and monitoring OSA patients at homePeer ReviewedPostprint (published version

    Assessment Of Soft Tissue Facial Profile, Nasal Airway Morphology And Dental Arch Features In Adult Malay Obstructive Sleep Apnea Patients Using Geometric Morphometric Analysis.

    Get PDF
    Masalah tidur apnea obstruktif (OSA) telah dikenal pasti sebagai satu masalah yang memberi impak kepada masyarakat setanding dengan masalah merokok. Obstructive sleep apnea (OSA) has been described as a public health problem comparable to smoking in its impacts upon society

    Snoring and arousals in full-night polysomnographic studies from sleep apnea-hypopnea syndrome patients

    Get PDF
    SAHS (Sleep Apnea-Hypopnea Syndrome) is recognized to be a serious disorder with high prevalence in the population. The main clinical triad for SAHS is made up of 3 symptoms: apneas and hypopneas, chronic snoring and excessive daytime sleepiness (EDS). The gold standard for diagnosing SAHS is an overnight polysomnographic study performed at the hospital, a laborious, expensive and time-consuming procedure in which multiple biosignals are recorded. In this thesis we offer improvements to the current approaches to diagnosis and assessment of patients with SAHS. We demonstrate that snoring and arousals, while recognized key markers of SAHS, should be fully appreciated as essential tools for SAHS diagnosis. With respect to snoring analysis (applied to a 34 subjects¿ database with a total of 74439 snores), as an alternative to acoustic analysis, we have used less complex approaches mostly based on time domain parameters. We concluded that key information on SAHS severity can be extracted from the analysis of the time interval between successive snores. For that, we built a new methodology which consists on applying an adaptive threshold to the whole night sequence of time intervals between successive snores. This threshold enables to identify regular and non-regular snores. Finally, we were able to correlate the variability of time interval between successive snores in short 15 minute segments and throughout the whole night with the subject¿s SAHS severity. Severe SAHS subjects show a shorter time interval between regular snores (p=0.0036, AHI cp(cut-point): 30h-1) and less dispersion on the time interval features during all sleep. Conversely, lower intra-segment variability (p=0.006, AHI cp: 30h-1) is seen for less severe SAHS subjects. Also, we have shown successful in classifying the subjects according to their SAHS severity using the features derived from the time interval between regular snores. Classification accuracy values of 88.2% (with 90% sensitivity, 75% specificity) and 94.1% (with 94.4% sensitivity, 93.8% specificity) for AHI cut-points of severity of 5 and 30h-1, respectively. In what concerns the arousal study, our work is focused on respiratory and spontaneous arousals (45 subjects with a total of 2018 respiratory and 2001 spontaneous arousals). Current beliefs suggest that the former are the main cause for sleep fragmentation. Accordingly, sleep clinicians assign an important role to respiratory arousals when providing a final diagnosis on SAHS. Provided that the two types of arousals are triggered by different mechanisms we hypothesized that there might exist differences between their EEG content. After characterizing our arousal database through spectral analysis, results showed that the content of respiratory arousals on a mild SAHS subject is similar to that of a severe one (p>>0.05). Similar results were obtained for spontaneous arousals. Our findings also revealed that no differences are observed between the features of these two kinds of arousals on a same subject (r=0.8, p<0.01 and concordance with Bland-Altman analysis). As a result, we verified that each subject has almost like a fingerprint or signature for his arousals¿ content and is similar for both types of arousals. In addition, this signature has no correlation with SAHS severity and this is confirmed for the three EEG tracings (C3A2, C4A1 and O1A2). Although the trigger mechanisms of the two arousals are known to be different, our results showed that the brain response is fairly the same for both of them. The impact that respiratory arousals have in the sleep of SAHS patients is unquestionable but our findings suggest that the impact of spontaneous arousals should not be underestimated

    Acoustic pharyngometry: clinical and instrumental correlations in sleep disorders

    Get PDF
    Summary Matteo Gelardi 1 , Alessandro Maselli del Giudice 2 , Francesco Cariti 3 , Michele Cassano 4 , Aline Castelante Farras 5 , Maria Luisa Fiorella 6 , Pasquale Cassano 7 1 ENT specialist (Physician of the Bari University Otorhinolaryngology Department - Italy) 2 Physician (ENT Resident - Bari University - Italy) 3 Physician (ENT Resident - Bari University - Italy) 4 ENT specialist (Researcher of the Foggia University Otorhinolaryngology Department - Italy) 5 ENT specialist (Fellow of the Foggia University Otorhinolaryngology Department - Italy) 6 ENT specialist (Researcher of the Bari University Otorhinolaryngology Department - Italy) 7 ENT and Audiology specialist (Head of the Foggia University Otorhinolaryngology Department and Full Professor of Otorhinolaryngology at Foggia University - Italy)Bari University - Italy; Foggia University - ItalyDr. Michele Cassano Via: Crispi 34/C CEP: 70123 Bari - Italy. Telephone: 00xx39-080-5235508/ 00xx39-3388105268 Fax: 00xx39-080-5211318. Dra. Aline Castelante Farras Rua Sete de Setembro, 676 Centro Vila Velha - ES Telefone: 27-32393661 E-mail: [email protected] [email protected] Paper submitted to the ABORL-CCF SGP (Management Publications System) on July 29th, 2005 and accepted for publication on November 3th, 2006. cod. 567

    Comparing non-verbal vocalisations in conversational speech corpora

    Get PDF
    Conversations do not only consist of spoken words but they also consist of non-verbal vocalisations. Since there is no standard to define and to classify (possible) non-speech sounds the annotations for these vocalisations differ very much for various corpora of conversational speech. There seems to be agreement in the six inspected corpora that hesitation sounds and feedback vocalisations are considered as words (without a standard orthography). The most frequent non-verbal vocalisation are laughter on the one hand and, if considered a vocal sound, breathing noises on the other

    Unconstrained snoring detection using a smartphone during ordinary sleep

    Full text link

    Automatic silence events detector from smartphone audio signals: a pilot mHealth system for sleep apnea monitoring at home

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Recently, mHealth tools are being proposed to screen OSA patients at home. In this work, we analyzed full-night audio signals recorded with a smartphone microphone. Our objective was to develop an automatic detector to identify silence events (apneas or hypopneas) and compare its performance to a commercial portable system for OSA diagnosis (ApneaLink™, ResMed). To do that, we acquired signals from three subjects with both systems simultaneously. A sleep specialist marked the events on smartphone and ApneaLink signals. The automatic detector we developed, based on the sample entropy, identified silence events similarly than manual annotation. Compared to ApneaLink, it was very sensitive to apneas (detecting 86.2%) and presented an 83.4% positive predictive value, but it missed about half the hypopnea episodes. This suggests that during some hypopneas the flow reduction is not reflected in sound. Nevertheless, our detector accurately recognizes silence events, which can provide valuable respiratory information related to the disease. These preliminary results show that mHealth devices and simple microphones are promising non-invasive tools for personalized sleep disorders management at homePostprint (published version
    corecore