6,038 research outputs found

    Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects

    Get PDF
    Location Dependent Queries (LDQs) benefit from the rapid advances in communication and Global Positioning System (GPS) technologies to track moving objects\u27 locations, and improve the quality-of-life by providing location relevant services and information to end users. The enormity of the underlying data maintained by LDQ applications - a large quantity of mobile objects and their frequent mobility - is, however, a major obstacle in providing effective and efficient services. Motivated by this obstacle, this thesis sets out in the quest to find improved methods to efficiently index, access, retrieve, and update volatile LDQ related mobile object data and information. Challenges and research issues are discussed in detail, and solutions are presented and examined. --Abstract, page iii

    Anonymizing continuous queries with delay-tolerant mix-zones over road networks

    Get PDF
    This paper presents a delay-tolerant mix-zone framework for protecting the location privacy of mobile users against continuous query correlation attacks. First, we describe and analyze the continuous query correlation attacks (CQ-attacks) that perform query correlation based inference to break the anonymity of road network-aware mix-zones. We formally study the privacy strengths of the mix-zone anonymization under the CQ-attack model and argue that spatial cloaking or temporal cloaking over road network mix-zones is ineffective and susceptible to attacks that carry out inference by combining query correlation with timing correlation (CQ-timing attack) and transition correlation (CQ-transition attack) information. Next, we introduce three types of delay-tolerant road network mix-zones (i.e.; temporal, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition attacks and in contrast to conventional mix-zones, perform a combination of both location mixing and identity mixing of spatially and temporally perturbed user locations to achieve stronger anonymity under the CQ-attack model. We show that by combining temporal and spatial delay-tolerant mix-zones, we can obtain the strongest anonymity for continuous queries while making acceptable tradeoff between anonymous query processing cost and temporal delay incurred in anonymous query processing. We evaluate the proposed techniques through extensive experiments conducted on realistic traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that the proposed techniques offer high level of anonymity and attack resilience to continuous queries. © 2013 Springer Science+Business Media New York

    Aspects of Spatial Trajectory Data Management–Compression and Clustering

    Get PDF

    Fast and Efficient Classification, Tracking, and Simulation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are composed of large numbers of resource-lean sensors that collect low-level inputs from the physical world. The applications present challenges for programmers. On the one hand, lightweight algorithms are required given the limited capacity of the constituent devices. On the other, the algorithms must be scalable to accommodate large networks. In this thesis, we focus on the design and implementation of fast and lean (yet scalable) algorithms for classification, simulation, and target tracking in the context of wireless sensor networks. We briefly consider each of these challenges in turn. The first challenge is to achieve high precision classification of high-level events in-network using limited computational and energy resources. We present in-network implementations of a Bayesian classifier and a condensed kd-tree classifier for identifying events of interest on resource-lean embedded sensors. The first approach uses preprocessed sensor readings to derive a multi-dimensional Bayesian classifier used to classify sensor data in real-time. The second introduces an innovative condensed kd-tree to represent preprocessed sensor data and uses a fast nearest-neighbor search to determine the likelihood of class membership for incoming samples. Both classifiers consume limited resources and provide high precision classification. To evaluate each approach, two case studies are considered, in the contexts of human movement and vehicle navigation, respectively. The classification accuracy is above 85% for both classifiers across the two case studies. The second challenge is to achieve high performance parallel simulation of sensor network hardware. This is achieved by reducing the synchronization overhead among distributed simulation processes. Traditional parallel simulation strategies introduce significant synchronization overhead, reducing the simulation speed. We present an optimistic simulation algorithm with support for backtracking and re-execution. The algorithm reduces the number of synchronization cycles to the number of transmissions in the network under test. Concretely, we implement SnapSim, an extension to the popular Avrora simulator, based on this algorithm. The experimental results show that our prototype system improves the performance of Avrora by 2 to 10 times for typical network-centric sensor network applications, and up to three orders of magnitude for applications that use the radio infrequently. The third challenge is to efficiently track a moving target in a network. The difficulty again lies in the conflict between the limited resource capacity of typical sensors and the significant processing requirements of typical tracking algorithms. We introduce an in-network object tracking framework for tracking mobile objects using resource-lean sensors. The framework is based on a distributed, dynamically scoped tracking algorithm which adaptively scopes the event detection region based on object speed. A leader node records the samples across an event region (without the aid of time synchronization) and estimates the object\u27s location in situ. To minimize the number of radio transmissions, the location snapshotting rate is also adjusted based on the object speed. In this dissertation, focusing on the above challenges, we present the design, implementation, and evaluation of classification, simulation, and tracking contributions

    Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

    Get PDF
    Advancements in sensor technology have made it less expensive to deploy massive numbers of sensors to observe continuous geographic phenomena at high sample rates and stream live sensor observations. This fact has raised new challenges since sensor streams have pushed the limits of traditional geo-sensor data management technology. Data Stream Engines (DSEs) provide facilities for near real-time processing of streams, however, algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are limited. This dissertation investigates near real-time representation and analysis of continuous ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors, using a DSE and proposes two novel stream query operator frameworks. First, the ST Interpolation Stream Query Operator Framework (STI-SQO framework) continuously transforms sensor streams into rasters using a novel set of stream query operators that perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D, main memory-based, ST Grid Index that enables high performance ST insertion and deletion of massive numbers of sensor observations through Isotropic Time Cell and Time Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation. Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO framework) efficiently evaluates value predicates over ST streams of ST continuous phenomena. The framework contains several stream-based predicate evaluation algorithms, including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target predicate evaluation to regions with seed points and minimize the number of raster cells that are interpolated when evaluating value predicates. The performance of the proposed frameworks was assessed with regard to prediction accuracy of output results and runtime. The STI-SQO framework achieved a processing throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error under 0.19 using a 500×500 grid. The STP-SQO framework processed over 250,000 observations in under 0.25 s for predicate results covering less than 40% of the observation area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm tested
    • …
    corecore