53,678 research outputs found

    An Information Theoretic Location Verification System for Wireless Networks

    Full text link
    As location-based applications become ubiquitous in emerging wireless networks, Location Verification Systems (LVS) are of growing importance. In this paper we propose, for the first time, a rigorous information-theoretic framework for an LVS. The theoretical framework we develop illustrates how the threshold used in the detection of a spoofed location can be optimized in terms of the mutual information between the input and output data of the LVS. In order to verify the legitimacy of our analytical framework we have carried out detailed numerical simulations. Our simulations mimic the practical scenario where a system deployed using our framework must make a binary Yes/No "malicious decision" to each snapshot of the signal strength values obtained by base stations. The comparison between simulation and analysis shows excellent agreement. Our optimized LVS framework provides a defence against location spoofing attacks in emerging wireless networks such as those envisioned for Intelligent Transport Systems, where verification of location information is of paramount importance

    The Dafny Integrated Development Environment

    Full text link
    In recent years, program verifiers and interactive theorem provers have become more powerful and more suitable for verifying large programs or proofs. This has demonstrated the need for improving the user experience of these tools to increase productivity and to make them more accessible to non-experts. This paper presents an integrated development environment for Dafny-a programming language, verifier, and proof assistant-that addresses issues present in most state-of-the-art verifiers: low responsiveness and lack of support for understanding non-obvious verification failures. The paper demonstrates several new features that move the state-of-the-art closer towards a verification environment that can provide verification feedback as the user types and can present more helpful information about the program or failed verifications in a demand-driven and unobtrusive way.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Verifying UML/OCL operation contracts

    Get PDF
    In current model-driven development approaches, software models are the primary artifacts of the development process. Therefore, assessment of their correctness is a key issue to ensure the quality of the final application. Research on model consistency has focused mostly on the models' static aspects. Instead, this paper addresses the verification of their dynamic aspects, expressed as a set of operations defined by means of pre/postcondition contracts. This paper presents an automatic method based on Constraint Programming to verify UML models extended with OCL constraints and operation contracts. In our approach, both static and dynamic aspects are translated into a Constraint Satisfaction Problem. Then, compliance of the operations with respect to several correctness properties such as operation executability or determinism are formally verified

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components

    Concurrent Data Structures Linked in Time

    Get PDF
    Arguments about correctness of a concurrent data structure are typically carried out by using the notion of linearizability and specifying the linearization points of the data structure's procedures. Such arguments are often cumbersome as the linearization points' position in time can be dynamic (depend on the interference, run-time values and events from the past, or even future), non-local (appear in procedures other than the one considered), and whose position in the execution trace may only be determined after the considered procedure has already terminated. In this paper we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure's auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We name the idea linking-in-time, because it reduces temporal reasoning to spatial reasoning. For example, modifying a temporal position of a linearization point can be modeled similarly to a pointer update in separation logic. Furthermore, the auxiliary state provides a convenient way to concisely express the properties essential for reasoning about clients of such concurrent objects. We illustrate the method by verifying (mechanically in Coq) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients
    • …
    corecore