14,758 research outputs found

    Snapshot Lifecycle Management -SLM

    Get PDF
    Abstract This paper sets forth "Snapshot Lifecycle Management", an innovative way to manage snapshot data rather than using Information Lifecycle Management. There are two major problems occurs in snapshot management by ILM: "inappropriate migration" and "redundancy". SLM manages snapshot data elaborately according to its characteristic to eliminate the twin problems. In addition, this paper also proposes "Snapshot Support for iLVM (Internet Logical Volume Management)", integrating SLM into iLVM. Use Copy-on-Write technique to update data between local site and remote site and replace the "Remote Region Time Parity" scheme in remote data checking

    Improving lifecycle query in integrated toolchains using linked data and MQTT-based data warehousing

    Full text link
    The development of increasingly complex IoT systems requires large engineering environments. These environments generally consist of tools from different vendors and are not necessarily integrated well with each other. In order to automate various analyses, queries across resources from multiple tools have to be executed in parallel to the engineering activities. In this paper, we identify the necessary requirements on such a query capability and evaluate different architectures according to these requirements. We propose an improved lifecycle query architecture, which builds upon the existing Tracked Resource Set (TRS) protocol, and complements it with the MQTT messaging protocol in order to allow the data in the warehouse to be kept updated in real-time. As part of the case study focusing on the development of an IoT automated warehouse, this architecture was implemented for a toolchain integrated using RESTful microservices and linked data.Comment: 12 pages, worksho

    JISC Preservation of Web Resources (PoWR) Handbook

    Get PDF
    Handbook of Web Preservation produced by the JISC-PoWR project which ran from April to November 2008. The handbook specifically addresses digital preservation issues that are relevant to the UK HE/FE web management community”. The project was undertaken jointly by UKOLN at the University of Bath and ULCC Digital Archives department

    D3.2 Cost Concept Model and Gateway Specification

    Get PDF
    This document introduces a Framework supporting the implementation of a cost concept model against which current and future cost models for curating digital assets can be benchmarked. The value built into this cost concept model leverages the comprehensive engagement by the 4C project with various user communities and builds upon our understanding of the requirements, drivers, obstacles and objectives that various stakeholder groups have relating to digital curation. Ultimately, this concept model should provide a critical input to the development and refinement of cost models as well as helping to ensure that the curation and preservation solutions and services that will inevitably arise from the commercial sector as ‘supply’ respond to a much better understood ‘demand’ for cost-effective and relevant tools. To meet acknowledged gaps in current provision, a nested model of curation which addresses both costs and benefits is provided. The goal of this task was not to create a single, functionally implementable cost modelling application; but rather to design a model based on common concepts and to develop a generic gateway specification that can be used by future model developers, service and solution providers, and by researchers in follow-up research and development projects.<p></p> The Framework includes:<p></p> • A Cost Concept Model—which defines the core concepts that should be included in curation costs models;<p></p> • An Implementation Guide—for the cost concept model that provides guidance and proposes questions that should be considered when developing new cost models and refining existing cost models;<p></p> • A Gateway Specification Template—which provides standard metadata for each of the core cost concepts and is intended for use by future model developers, model users, and service and solution providers to promote interoperability;<p></p> • A Nested Model for Digital Curation—that visualises the core concepts, demonstrates how they interact and places them into context visually by linking them to A Cost and Benefit Model for Curation.<p></p> This Framework provides guidance for data collection and associated calculations in an operational context but will also provide a critical foundation for more strategic thinking around curation such as the Economic Sustainability Reference Model (ESRM).<p></p> Where appropriate, definitions of terms are provided, recommendations are made, and examples from existing models are used to illustrate the principles of the framework

    The LIFE2 final project report

    Get PDF
    Executive summary: The first phase of LIFE (Lifecycle Information For E-Literature) made a major contribution to understanding the long-term costs of digital preservation; an essential step in helping institutions plan for the future. The LIFE work models the digital lifecycle and calculates the costs of preserving digital information for future years. Organisations can apply this process in order to understand costs and plan effectively for the preservation of their digital collections The second phase of the LIFE Project, LIFE2, has refined the LIFE Model adding three new exemplar Case Studies to further build upon LIFE1. LIFE2 is an 18-month JISC-funded project between UCL (University College London) and The British Library (BL), supported by the LIBER Access and Preservation Divisions. LIFE2 began in March 2007, and completed in August 2008. The LIFE approach has been validated by a full independent economic review and has successfully produced an updated lifecycle costing model (LIFE Model v2) and digital preservation costing model (GPM v1.1). The LIFE Model has been tested with three further Case Studies including institutional repositories (SHERPA-LEAP), digital preservation services (SHERPA DP) and a comparison of analogue and digital collections (British Library Newspapers). These Case Studies were useful for scenario building and have fed back into both the LIFE Model and the LIFE Methodology. The experiences of implementing the Case Studies indicated that enhancements made to the LIFE Methodology, Model and associated tools have simplified the costing process. Mapping a specific lifecycle to the LIFE Model isn’t always a straightforward process. The revised and more detailed Model has reduced ambiguity. The costing templates, which were refined throughout the process of developing the Case Studies, ensure clear articulation of both working and cost figures, and facilitate comparative analysis between different lifecycles. The LIFE work has been successfully disseminated throughout the digital preservation and HE communities. Early adopters of the work include the Royal Danish Library, State Archives and the State and University Library, Denmark as well as the LIFE2 Project partners. Furthermore, interest in the LIFE work has not been limited to these sectors, with interest in LIFE expressed by local government, records offices, and private industry. LIFE has also provided input into the LC-JISC Blue Ribbon Task Force on the Economic Sustainability of Digital Preservation. Moving forward our ability to cost the digital preservation lifecycle will require further investment in costing tools and models. Developments in estimative models will be needed to support planning activities, both at a collection management level and at a later preservation planning level once a collection has been acquired. In order to support these developments a greater volume of raw cost data will be required to inform and test new cost models. This volume of data cannot be supported via the Case Study approach, and the LIFE team would suggest that a software tool would provide the volume of costing data necessary to provide a truly accurate predictive model

    How much does it cost? The LIFE Project - costing models for digital curation and preservation

    Get PDF
    Digital preservation is concerned with the long-term safekeeping of electronic resources. How can we be confident of their permanence, if we do not know the cost of preservation? The LIFE (Lifecycle Information for E-Literature) Project has made a major step forward in understanding the long-term costs in this complex area. The LIFE Project has developed a methodology to model the digital lifecycle and to calculate the costs of preserving digital information for the next 5, 10 or 100 years. National and higher education (HE) libraries can now apply this process and plan effectively for the preservation of their digital collections. Based on previous work undertaken on the lifecycles of paper-based materials, the LIFE Project created a lifecycle model and applied it to real-life digital collections across a diverse subject range. Three case studies examined the everyday operations, processes and costs involved in their respective activities. The results were then used to calculate the direct costs for each element of the digital lifecycle. The Project has made major advances in costing preservation activities, as well as making detailed costs of real digital preservation activities available. The second phase of LIFE (LIFE2), which recently started, aims to refine the lifecycle methodology and to add a greater range and breadth to the project with additional exemplar case studies

    Lifecycle information for e-literature: a summary from the LIFE project.

    Get PDF
    The LIFE Project has developed a methodology to calculate the long-term costs and future requirements of the preservation of digital assets. LIFE has achieved this by analysing and comparing three different digital collections and by applying a lifecycle approach to each. From this work LIFE has identified a number of strategic issues and common needs. The critical strategic issues are: •There is a need for a wider collaborative approach between Higher Education (HE) and Libraries to aid in the cost-effective development of tools and methods. •The time required for the realistic development of the next generation of these tools and methodologies is largely unknown and should form part of a collective responsibility within the digital preservation community. •There exists a real opportunity to establish long-term partnerships between institutions to address common requirements. The challenge is to establish multidisciplinary Project teams and programmes to lead these developments. •There exists a real opportunity to establish long-term partnerships between institutions and industry to develop this methodology and to establish new opportunities to share knowledge and experience. The LIFE project could become an important vehicle for the development of these new opportunities

    Component-aware Orchestration of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes

    Full text link
    Enterprise IT is currently facing the challenge of coordinating the management of complex, multi-component applications across heterogeneous cloud platforms. Containers and container orchestrators provide a valuable solution to deploy multi-component applications over cloud platforms, by coupling the lifecycle of each application component to that of its hosting container. We hereby propose a solution for going beyond such a coupling, based on the OASIS standard TOSCA and on Docker. We indeed propose a novel approach for deploying multi-component applications on top of existing container orchestrators, which allows to manage each component independently from the container used to run it. We also present prototype tools implementing our approach, and we show how we effectively exploited them to carry out a concrete case study
    • …
    corecore