8,612 research outputs found

    Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation

    Get PDF
    In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations

    Cardiac Cavity Segmentation in Echocardiography Using Triangle Equation

    Get PDF
    In this paper, cardiac cavity segmentation in echocardiography is proposed. The method uses triangle equation algorithms to detect and reconstruct the border. Prior to the application of both algorithms, some preprocessings have to be carried out. The first step is high boost filter to enhance high frequency component while still keeping the low frequency component. The second step is applying morphological and thresholding operations to eliminate noise and convert the image into binary image. The third step is negative laplacian filter to apply edge detector. The fourth step is region filter to eliminate small region. The last step is using triangle equation to detect and reconstruct the imprecise border. This technique is able to perform segmentation and detect border of cardiac cavity from echocardiographics sequences. Keywords: cardiac cavity, high boost filter, morphology, negative laplacian, region filter, and triangle equation

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Prevention, Eradication, and Containment of Invasive Species: Illustrations from Hawaii

    Get PDF
    Invasive species change ecosystems and the economic services such ecosystems provide. Optimal policy will minimize the expected damages and costs of prevention and control. We seek to explain policy outcomes as a function of biological and economic factors, using the case of Hawaii to illustrate. First, we consider an existing invader, Miconia calvescens, a plant with the potential to reduce biodiversity, soil cover, and water availability. We then examine an imminent threat, the potential arrival of the Brown treesnake (Boiga irregularis). The arrival of the snake in Guam has led to native bird extirpations, power outages, and health costs.invasive species, bioeconomics, optimal control, Miconia calvescens, Boiga, Resource /Energy Economics and Policy,

    Image and Volume Segmentation by Water Flow

    No full text
    A general framework for image segmentation is presented in this paper, based on the paradigm of water flow. The major water flow attributes like water pressure, surface tension and capillary force are defined in the context of force field generation and make the model adaptable to topological and geometrical changes. A flow-stopping image functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method is assessed qualitatively and quantitatively on synthetic and natural images. It is shown that the new approach can segment objects with complex shapes or weak-contrasted boundaries, and has good immunity to noise. The operator is also extended to 3-D, and is successfully applied to medical volume segmentation

    Distribution of the Queen Snake (Regina septemvittata) in Arkansas

    Get PDF
    We documented the distribution of the queen snake, Regina septemvittata, in northern Arkansas during the 2005 and 2006 activity seasons. Arkansas currently contains the only known disjunct population of this species west of the Mississippi River. Field work was conducted throughout the Boston Mountains of the Ozark Plateau to verify the presence of queen snakes from historic localities as well as to identify new localities containing these snakes. Seventeen individuals were found in the Mulberry River of Franklin and Johnson counties and the Illinois Bayou watershed of Pope County. Of these 17 snakes, 5 were kept as voucher specimens in the Arkansas State University Museum of Zoology herpetological collection, II were marked (elastomer dyes, PIT tags, and scale clippings) and released, and I evaded capture. None of the marked individuals were recaptured. Our findings suggest that queen snake populations have not increased in number or range since the last published study on the species in Arkansas in 1991

    Water quality strategy for the Lockwoods Folly River: A partnership for an ailing river

    Get PDF
    As with a majority of the remaining undeveloped coastal areas in North Carolina, Brunswick County is not a hidden treasure any more. Since 1980 the county’s population has more than tripled to over 95,000 and another 30,000 or so residents are expected to make this last bastion of undeveloped southeastern NC their home by 2020, even with the current economic downturn. As the 29th fastest growing county in the nation this population explosion is resulting in rapid landscape scale land use changes within the watershed of the Lockwoods Folly River. Subdivisions, shopping centers, new highways and bridges, golf courses, and marinas are becoming significant land use activities. The surging development within this 150-square mile 88 thousand-acre watershed has had a severe effect on the health of the river. The portion of the river closed to shell fishing has more that tripled from 18 percent in 1980 to more than 55 percent today and 60% of the beds are considered impaired. For generations, locals have enjoyed the bounty of the Lockwoods Folly River and estuarine system famed for its rich and abundant shell fish beds and excellent coastal inshore fishing. This river system stretches from the Lockwoods Folly Inlet at the Atlantic Ocean inland where it makes the transformation from saltwater marshes to a winding blackwater river that snakes into hundreds of smaller tributaries and blackwater swamps. (PDF contains 4 pages

    Three-Dimensional GPU-Accelerated Active Contours for Automated Localization of Cells in Large Images

    Full text link
    Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. This becomes particularly challenging for extremely large images, since manual intervention and processing time can make segmentation intractable. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional (3D) contour evolution that extends previous work on fast two-dimensional active contours. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell segmentation tasks when compared to existing methods on large 3D brain images

    EFFECTS OF SEX, ENVIRONMENT, AND CONDITION ON THE MUSKING BEHAVIOR OF SYMPATRIC GARTERSNAKES (THAMNOPHIS SPP.)

    Get PDF
    Despite an abundance of studies documenting antipredator and defensive behaviors of gartersnakes (genus Thamnophis), few have quantitatively examined musking, a widely utilized antipredator tactic. In this study we quantify musking behaviors in the Terrestrial Gartersnake (Thamnophis elegans) and the Plains Gartersnake (T. radix) when hand-captured at four sites in and near Denver, Colorado, USA. Overall, Plains Gartersnakes musked significantly more often than Terrestrial Gartersnakes. Female Terrestrial Gartersnakes musked more frequently than males, a pattern not evident in the Plains Gartersnake. Additionally, we observed a positive correlation in body condition and musking propensity in Terrestrial Gartersnakes, suggesting resource-dependent behavior in this species. Musking behavior was consistent across variations in predation pressure, environmental conditions, and snake body size, all factors shown to influence other gartersnake defensive behaviors. These results corroborate other research which demonstrates that snake antipredator behaviors are determined by complex interactions of abiotic and biotic factors
    • 

    corecore