42 research outputs found

    Robotic Search and Rescue through In-Pipe Movement

    Get PDF
    So far, we have been engaged in the research and development of various kinds of robots that could be applied to in-pipe inspections that existing methods (screw-drive type, parallel multi-modular type, and articulated wheeled type) cannot perform. In this chapter, we categorized each in-pipe inspection robot depending on its configuration and structure, which includes the design of the propulsive mechanism, steering mechanism, stretching mechanism, and the locations of the wheel and joint axes. On the basis of this classification and from a developer’s point of view, we also discussed the various kinds of robots that we have developed, along with their advantages and disadvantages

    Hybrid Inspection Robot for Indoor and Outdoor Surveys

    Get PDF
    In this paper, simulation and experimental tests are reported for a hybrid robot being used for indoor and outdoor inspections. Automatic or tele-operated surveys can be performed by mobile robots, which represent the most efficient solution in terms of power consumption, control, robustness, and overall costs. In the context of structures and infrastructure inspection, robots must be able to move on horizontal or sloped surfaces and overpass obstacles. In this paper, the mechatronic design, simulations, and experimental activity are proposed for a hybrid robot being used for indoor and outdoor inspections, when the environmental conditions do not allow autonomous navigation. In particular, the hybrid robot is equipped with external and internal sensors to acquire information on the main structural elements, avoiding the need for experienced personnel being directly inside the inspection site, taking information from the environment and aiding the pilot to understand the best maneuvers/decisions to take. Given the current state of research and shortcomings worldwide, this paper discusses inspection robots taking into account the main issues in their use, functionality and standard systems, and how internal sensors can be set in order to improve inspection robots’ performances. On this basis, an illustrative study case is proposed

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robot’s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPR’s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive

    PROGRAM and PROCEEDINGS THE NEBRASKA ACADEMY OF SCIENCES: 139th Anniversary Year, One Hundred-Twenty-Ninth Annual Meeting, April 12, 2019, NEBRASKA WESLEYAN UNIVERSITY, LINCOLN, NEBRASKA

    Get PDF
    PROGRAM AT-A-GLANCE FRIDAY, APRIL 12, 2019 7:30 a.m. REGISTRATION OPENS - Lobby of Lecture Wing, Olin Hall 8:00 Aeronautics and Space Science, Session A – Acklie 109 Aeronautics and Space Science, Session B – Acklie 111 Collegiate Academy; Biology, Session B - Olin B Biological and Medical Sciences, Session A - Olin 112 Biological and Medical Sciences, Session B - Smith Callen Conference Center Chemistry and Physics; Chemistry - Olin A 8:00 “Teaching and Learning the Dynamics of Cellular Respiration Using Interactive Computer Simulations” Workshop – Olin 110 9:30 “Life After College: Building Your Resume for the Future” Workshop – Acklie 218 8:25 Collegiate Academy; Chemistry and Physics, Session A – Acklie 007 8:36 Collegiate Academy; Biology, Session A - Olin 111 9:00 Chemistry and Physics; Physics – Acklie 320 9:10 Aeronautics and Space Science, Poster Session – Acklie 109 & 111 10:30 Aeronautics and Space Science, Poster Session – Acklie 109 & 111 11:00 MAIBEN MEMORIAL LECTURE: Dr David Swanson - OLIN B Scholarship and Friend of Science Award announcements 12:00 p.m. LUNCH – WESLEYAN CAFETERIA Round-Table Discussion – “Assessing the Academy: Current Issues and Avenues for Growth” led by Todd Young – Sunflower Room 12:50 Anthropology – Acklie 109 1:00 Applied Science and Technology - Olin 111 Biological and Medical Sciences, Session C - Olin 112 Biological and Medical Sciences, Session D - Smith Callen Conference Center Chemistry and Physics; Chemistry - Olin A Collegiate Academy; Biology, Session B - Olin B Earth Science – Acklie 007 Environmental Sciences – Acklie 111 Teaching of Science and Math – Acklie 218 1:20 Chemistry and Physics; Physics – Acklie 320 4:30 BUSINESS MEETING - OLIN B NEBRASKA ASSOCIATION OF TEACHERS OF SCIENCE (NATS) The 2019 Fall Conference of the Nebraska Association of Teachers of Science (NATS) will be held at the Younes Conference Center, Kearney, NE, September 19-21, 2019. President: Betsy Barent, Norris Public Schools, Firth, NE President-Elect: Anya Covarrubias, Grand Island Public Schools, Grand Island, NE AFFILIATED SOCIETIES OF THE NEBRASKA ACADEMY OF SCIENCES, INC. 1. American Association of Physics Teachers, Nebraska Section Web site: http://www.aapt.org/sections/officers.cfm?section=Nebraska 2. Friends of Loren Eiseley Web site: http://www.eiseley.org/ 3. Lincoln Gem & Mineral Club Web site: http://www.lincolngemmineralclub.org/ 4. Nebraska Chapter, National Council for Geographic Education 5. Nebraska Geological Society Web site: http://www.nebraskageologicalsociety.org Sponsors of a $50 award to the outstanding student paper presented at the Nebraska Academy of Sciences Annual Meeting, Earth Science /Nebraska Chapter, Nat\u27l Council Sections 6. Nebraska Graduate Women in Science 7. Nebraska Junior Academy of Sciences Web site: http://www.nebraskajunioracademyofsciences.org/ 8. Nebraska Ornithologists’ Union Web site: http://www.noubirds.org/ 9. Nebraska Psychological Association http://www.nebpsych.org/ 10. Nebraska-Southeast South Dakota Section Mathematical Association of America Web site: http://sections.maa.org/nesesd/ 11. Nebraska Space Grant Consortium Web site: http://www.ne.spacegrant.org

    Journal of the Arkansas Academy of Science - Volume 57 2003

    Get PDF
    corecore