84 research outputs found

    Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research

    Get PDF
    Sodium-ion batteries (SIBs) are one of the most promising candidates to replace lithium-ion batteries (LIBs) in grid-scale energy storage applications. SIBs technology is still in an early development stage and new feasible and low-cost active materials are required. The design of high-performance anodes and the fully understanding of the sodium storage mechanisms are the main bottleneck to overcome. Hard carbons (HCs) are extensively studied as anode material since sodium ions can be intercalated in pseudographitic domains and reversibly adsorbed in surface edges, defects and nanopores. This review aims at providing a comprehensive overview of the current state of knowledge of plant-derived HC anodes in SIBs, which can be helpful for researchers from different backgrounds working in the field. Working principles of SIBs are summarized, together with a detailed description of the Na-ion storage mechanisms in hard carbon anodes proposed to date. Finally, an exhaustive literature review on the performance of plant-derived HCs in SIBs is presented, with special focus on the synthesis pathways (including activation and/or doping treatments)

    Recent development of metal compound applications in lithium–sulphur batteries

    Get PDF

    Strategies toward the Improvement of Lithium Sulfur Battery Performance

    Get PDF
    Lithium-sulfur batteries (LSBs) are one of the most alluring next-generation energy storage technologies. This device can produce high specific capacity and energy density by taking advantage of the conversion reaction between lithium and sulfur. Additionally, elemental sulfur is inexpensive, abundant, non-toxic, and safe for the environment. On the other hand, the main barriers impeding a commercial breakthrough are the insulating properties of sulfur, the lithium-polysulfide shuttle effect, and the volumetric variation upon charge and discharge, which contribute to early cell failure. As a result, during the past few decades, significant research efforts have been made to develop the components of LSB. Interlayers, composites, new electrolytes, nanostructured cathode materials, and a new cell design demonstrated to be valid approaches to limit the polysulfide shuttle effect thus improving the battery performance. The current work investigates various strategies to alleviate the LSB's shortcomings. Carbonaceous materials as sulfur hosts were studied. Two unique sulfur-carbon composites containing single-walled carbon nanohorns and double-walled carbon nanotubes, were produced as LSB electrodes using a straightforward and sustainable evaporation process to demonstrate their suitability as cathodic materials. Lithium sulfide was investigated as a starting active material for the production of LSBs cathodes. The lithium-sulfide-based electrode and a biowaste-based anode were tested together in a complete cell configuration. Additionally, the impact of various electrolyte compositions on battery behavior was assessed. Alternative electrolyte salts with various anion donicity were compared to the common LSBs electrolyte. Moreover, a simultaneous investigation of the effects of electrode composition and electrolyte formulation on cell outputs is being conducted using a Design of Experiment. This effective technique takes into account all the parameters having an effect on the system response resulting in a global information on the studied subject. The last section is an overview of the projects completed in association with the ZEISS Company and the Innovations-Institut für Nanotechnologie und korrelative Mikroskopie e.V. in Forchheim, Germany. A complete workflow for battery materials analyses with cutting-edge methodology is suggested in this frame

    Lithium-Ion Battery and Beyond: Oxygen Vacancy Creation in Tungsten Trioxide and Surface Modification of Lithium Metal

    Get PDF
    The graphite-based anode material has a low theoretical specific capacity of 371 mAh g-1. The transitional metal oxides (TMOs) are considered a better choice owing to their relatively higher specific capacity. Among TMOs, tungsten trioxide (WO3) is considered promising due to a higher specific capacity of 693 mAh g-1, low cost, mechanically stable, and eco-friendly. It has been a challenge to utilize the TMOs as anode materials as they suffer from poor electronic conductivity and large electrode volume expansion during discharge/charge cycles. In our first project, we demonstrate a unique self-recovery of capacity in reduced WO3 by the incorporation of urea followed by annealing at 500 °C under the N2 environment. The reduced WO3 exhibited a unique cycling phenomenon, where the capacity was significantly self-recovered after an initial sharp decrease. This can be attributed to the activation of oxygen vacancy sites or defects, making the WO3 electrode more electrochemically active with cycling. In our second and third projects, we modify the surface of lithium metal to utilize them as anode because LIBs are approaching their theoretical energy density limit. Lithium metal anodes are expected to drive practical applications that require high energy-density storage. However, the direct use of metallic lithium causes safety concerns, low rate capabilities, and poor cycling performances due to unstable solid electrolyte interphase (SEI) and undesired lithium dendrite growth. To address these issues, in our second project, radio frequency (R-F) sputtered graphite-SiO2 ultrathin bilayer on a Li metal chips was demonstrated, for the first time, as an effective solid-electrolyte interface (SEI) layer. In the third project, we developed a facile, costeffective, and one-step approach to generate an artificial lithium metal/electrolyte interphase by treating lithium anode with an electrolyte containing tin fluoride. The development of artificial SEI on top of lithium metal anode led to a dendrite free uniform Li deposition to achieve a stable voltage profile and outstanding long hours plating/stripping compared to the bare Li. The generated SEI not only ensures fast lithiumion diffusion and suppression of lithium dendrite growth but also brings a synergistic effect of storing lithium via a reversible silicon-lithium or tin-lithium alloy formation and lithium plating

    Nanostructured Materials Derived from Metal-Organic Frameworks for Energy and Environmental Applications

    Get PDF
    Nowadays, energy and environmental issues have become the top priority among a series of global issues. Fossil fuels as the dominant source are depleted fast and usually lead to some environmental problems. Heavy metal pollution has posed a severe threat to environment and public health. Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted more and more interest in research communities due to their extremely high surface areas, diverse nanostructures and unique properties. To meet the ever-increasing energy demand and tackle the heavy metal pollution in water, MOFs can function as ideal templates to prepare various nanostructured materials for energy and environmental cleaning applications. The aim of this dissertation is to design and synthesize metal-organic frameworks (MOFs) derived nanomaterials with desirable structures, morphologies and compositions for energy applications in Li-ion batteries (LIBs), dye-sensitized solar cells (DSSCs) and electrocatalytic water splitting and environmental application in removal of heavy metal from aqueous systems. Their performances are mainly dependent on the characteristics of nanostructured materials. Briefly, the first two projects are focused on synthesis of ZIF-8 derived N-doped porous carbon and ZIF-67 derived ultrafine Co3O4 nanoparticles/carbon nanotube composites as high-performance anode materials for Li-ion batteries. The third project concentrates on synthesis of CoNi alloy embedded carbon nanocages derived from bimetallic organic frameworks for DSSCs. In addition, MOFs-derived CoNi and CoNx@Co/N-doped carbon tubes are synthesized and evaluated as low-cost electrocatalysts for efficient oxygen evolution reaction (OER). The last project is focused on study of ZIF-8 as an efficient absorbent for removal of copper ions from wastewater

    Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries

    Get PDF
    Rechargeable lithium-ion batteries (LIBs) are one of the most promising alternatives to effectively bypass fossil fuels. However, long-term energy application of LIBs could be restricted in the future due to the increased production cost of LIB arising from the shortage and inaccessibility of Li in the Earth's crust. Na or K have been considered as substitutes for Li but in spite of their natural abundance, they suffer from low gravimetric/volumetric energy density. An alternative to increase the efficiency of sodium-ion battery (SIBs) and potassium-ion battery (KIBs) is to focus on finding the high‐performing negative electrode, the anode. The large volume changes of alloying and conversion type anodes for KIBs and SIBs make hard carbons to a better option on this regard than usual graphitic carbons, but a key obstacle is the reliance on unsustainable sources. Thus, biomass-derived carbon could offer a promising alternative, and it has indeed been in the focus of much recent work. This review highlights the recent advances in using carbon extracted from various biomass sources in rechargeable Li-, Na-, and K-ion batteries. Maximizing the energy and power densities as well as the lifetime of carbon anodes require an exploration of the right balance between carbon structures, pore morphology, chemical composition and alkali metal-ion storage. Thus, in this review, first, we take stock of key challenges and opportunities to extract carbon from various plants structural components and identify the extracted carbon structure compared to graphite-like structure. Then, we provide an overview on morphological and structural modification of the extracted carbons. Finally, we show how the physicochemical properties, structural alignment and morphological variation of the biomass-derived carbon can affect the storage mechanism and electrochemical performance. The extensive overview of this topic provided here is expected to stimulate further work on environmentally friendly battery design and towards the optimization of the battery performance. Electrode materials in alkali-metal-ion batteries that are based on biomass-derived carbon may allow not only a technical breakthrough, but also an ethically and socially acceptable product

    Surface engineering of commercial activated carbon for improving the charge storability of electrochemical capacitors

    Get PDF
    Supercapacitors based on activated carbon are the representatives of sustainable devices among electrochemical energy storage devices because of their renewable electrode materials, eco-friendliness, longer life cycle and superior charge-discharge rate capabilities. However, to expand their commercial value, their current energy densities should be made comparable with the market leading Lithium-ion batteries. One of the approaches to increase the energy density is by maximizing the number of pores to incorporate more ions. A majority of the research on supercapacitors demonstrated excellent laboratory-scale results through improving porosity, where the mass loading of such electrodes has a staggering difference from the industrial standards. These factors predominantly suppressed the initiatives to lift the biomass-derived carbon-based electrodes into the commercial picture. To address this issue, the present thesis focuses on expanding the electrochemical properties of commercial activated carbon derived from palm kernel shells by engineering its porosity in an eco-friendly and cost-effective manner. Herein, we employ the nitric acid refluxing method for the activation purpose, which, unlike the conventional routes, not only limits the usage of harsh chemicals, but also enables recyclability. We have optimized the performance of the electrode materials by refluxing the activated carbon for various acid to precursor ratios and refluxing duration. The electrochemical performances of the resulting materials were examined in a three-electrode system configuration in 1 M sodium sulphate electrolyte. The specific capacitance of the optimum sample was increased ~110% following a significant reduction in Warburg impedance. To understand the physicochemical alterations introduced upon refluxing, the as-synthesized carbon samples were characterized using X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning ElectronMicroscopy, Energy Dispersive Spectroscopy, and gas adsorption measurements. With~75% increment, a highest surface area of ~722 m2·g-1 was recorded for the 72 hours refluxed sample, which aligns with the increased electrochemical performance incorresponding electrodes. Further, supercapacitor devices were fabricated using thisoptimized sample by varying the mass loading (~3, ~6, ~9, ~12, and ~14 mg·cm2), andthe electrochemical properties were studied. All the fabricated devices achieved apotential window of 1.8 V in 1 M sodium sulphate. The highest mass loaded (~14 mg·cm-2)device fabricated using the prepared material has delivered a maximum a real capacitance of ~494 mF·cm-2, an energy density of ~13 mWh·cm-3, and a maximum power density of ~2189 mW·cm-3. The current research thereby demonstrates an environmentally friendly and economic approach for engineering the porosity of commercial activated carbon to enhance the charge storability for practical applications

    Surface and Structure Engineering for Next Generation Lithium Metal Batteries

    Get PDF
    Lithium (Li) metal has been considered as one of the most promising anode materials to replace conventional graphite for Li-ion battery due to its high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.04 V vs standard hydrogen electrode). However, it still faces some problems such as unstable solid electrolyte interphase (SEI), uncontrolled Li dendrites growth, and infinite volume change during battery charging/discharging. To develop a stable and low-cost Li metal anode for next-generation Li metal battery, in this dissertation, we have made efforts to understand and solve these problems in two aspects, by introducing an artificial SEI and constructing a 3D porous current collector. Firstly, a multifunctional artificial SEI protective layer was designed via using a nitrogen plasma treatment on the Li metal. A highly [001] oriented Li nitride (Li3N) layer was formed on the surface of Li metal with a plasma activation time of fewer than 5 minutes. Due to its high Young’s modulus (48 GPa) and high ionic conductivity (5.02×10- 1 mS cm-1), the Li3N artificial SEI layer blocked the direct contact between reactive Li metal and the liquid organic electrolyte, and suppressed the Li dendrite formation. Secondly, a highly flexible copper (Cu)-clad carbon framework (CuCF) current collector was designed for Li metal batteries. The pyrolysis of melamine-formaldehyde foam and following Cu electrodeposition were employed to fabricate the CuCF. The advanced current collector exhibited excellent flexibility with uniformly distributed Li nucleation sites on its surface. The cross-linked fiber network structure with large space could accommodate the volume change, while the high surface area and uniformly distributed Li nucleation sites led to the quench of the formation of Li dendrites. As a result, a dendrite-free Li metal anode was achieved in both circumstances. The Li3N artificial SEI and CuCF both gave rise to a stable Li plating/stripping with high Coulombic efficiency. In both cases, Li/LCO or Li/LFP full cells exhibited a long cycling life at a high current density of 1C. Furthermore, the Li deposition behavior with an artificial SEI and 3D current collector was also studied and compared with bare Li in the dissertation. The methods and strategies we used in the dissertation can provide a facile approach to realize a stable and safe Li metal anode for next-generation Li metal batteries
    corecore