994 research outputs found

    Smooth Subdivision Surfaces: Mesh Blending and Local Interpolation

    Get PDF
    Subdivision surfaces are widely used in computer graphics and animation. Catmull-Clark subdivision (CCS) is one of the most popular subdivision schemes. It is capable of modeling and representing complex shape of arbitrary topology. Polar surface, working on a triangle-quad mixed mesh structure, is proposed to solve the inherent ripple problem of Catmull-Clark subdivision surface (CCSS). CCSS is known to be C1 continuous at extraordinary points. In this work, we present a G2 scheme at CCS extraordinary points. The work is done by revising CCS subdivision step with Extraordinary-Points-Avoidance model together with mesh blending technique which selects guiding control points from a set of regular sub-meshes (named dominative control meshes) iteratively at each subdivision level. A similar mesh blending technique is applied to Polar extraordinary faces of Polar surface as well. Both CCS and Polar subdivision schemes are approximating. Traditionally, one can obtain a CCS limit surface to interpolate given data mesh by iteratively solving a global linear system. In this work, we present a universal interpolating scheme for all quad subdivision surfaces, called Bezier Crust. Bezier Crust is a specially selected bi-quintic Bezier surface patch. With Bezier Crust, one can obtain a high quality interpolating surface on CCSS by parametrically adding CCSS and Bezier Crust. We also show that with a triangle/quad conversion process one can apply Bezier Crust on Polar surfaces as well. We further show that Bezier Crust can be used to generate hollowed 3D objects for applications in rapid prototyping. An alternative interpolating approach specifically designed for CCSS is developed. This new scheme, called One-Step Bi-cubic Interpolation, uses bicubic patches only. With lower degree polynomial, this scheme is appropriate for interpolating large-scale data sets. In sum, this work presents our research on improving surface smoothness at extraordinary points of both CCS and Polar surfaces and present two local interpolating approaches on approximating subdivision schemes. All examples included in this work show that the results of our research works on subdivision surfaces are of high quality and appropriate for high precision engineering and graphics usage

    Point-Normal Subdivision Curves and Surfaces

    Full text link
    This paper proposes to generalize linear subdivision schemes to nonlinear subdivision schemes for curve and surface modeling by refining vertex positions together with refinement of unit control normals at the vertices. For each round of subdivision, new control normals are obtained by projections of linearly subdivided normals onto unit circle or sphere while new vertex positions are obtained by updating linearly subdivided vertices along the directions of the newly subdivided normals. Particularly, the new position of each linearly subdivided vertex is computed by weighted averages of end points of circular or helical arcs that interpolate the positions and normals at the old vertices at one ends and the newly subdivided normal at the other ends. The main features of the proposed subdivision schemes are three folds: (1) The point-normal (PN) subdivision schemes can reproduce circles, circular cylinders and spheres using control points and control normals; (2) PN subdivision schemes generalized from convergent linear subdivision schemes converge and can have the same smoothness orders as the linear schemes; (3) PN C2C^2 subdivision schemes generalizing linear subdivision schemes that generate C2C^2 subdivision surfaces with flat extraordinary points can generate visually C2C^2 subdivision surfaces with non-flat extraordinary points. Experimental examples have been given to show the effectiveness of the proposed techniques for curve and surface modeling.Comment: 30 pages, 17 figures, 22.5M

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    Bivariate Hermite subdivision

    Get PDF
    A subdivision scheme for constructing smooth surfaces interpolating scattered data in R3\mathbb{R}^3 is proposed. It is also possible to impose derivative constraints in these points. In the case of functional data, i.e., data are given in a properly triangulated set of points {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N from which none of the pairs (xi,yi)(x_i,y_i) and (xj,yj)(x_j,y_j) with i≠ji\neq j coincide, it is proved that the resulting surface (function) is C1C^1. The method is based on the construction of a sequence of continuous splines of degree 3. Another subdivision method, based on constructing a sequence of splines of degree 5 which are once differentiable, yields a function which is C2C^2 if the data are not 'too irregular'. Finally the approximation properties of the methods are investigated

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes
    • …
    corecore