65 research outputs found

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    Computing Economic Equilibria by a Homotopy Method

    Full text link
    In this paper the possibility of computing equilibrium in pure exchange and production economies by a homotopy method is investigated. The performance of the algorithm is tested on examples with known equilibria taken from the literature on general equilibrium models and numerical results are presented. In computing equilibria, economy will be specified by excess demand function.Comment: 12th IEEE International Symposium on Computational Intelligence and Informatic

    A Semismooth Newton Method for Tensor Eigenvalue Complementarity Problem

    Full text link
    In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly semismooth but not differentiable, in which case the classical smoothing methods cannot apply. Furthermore, we propose a damped semismooth Newton method for tensor eigenvalue complementarity problem. A new procedure to evaluate an element of the generalized Jocobian is given, which turns out to be an element of the B-subdifferential under mild assumptions. As a result, the convergence of the damped semismooth Newton method is guaranteed by existing results. The numerical experiments also show that our method is efficient and promising

    A nonlinear complementarity approach for the national energy modeling system

    Full text link

    An Incremental Gradient Method for Optimization Problems with Variational Inequality Constraints

    Full text link
    We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that each agent is associated with a local monotone mapping. This problem finds an application in computation of the best equilibrium in nonlinear complementarity problems arising in transportation networks. We develop an iteratively regularized incremental gradient method where at each iteration, agents communicate over a cycle graph to update their solution iterates using their local information about the objective and the mapping. The proposed method is single-timescale in the sense that it does not involve any excessive hard-to-project computation per iteration. We derive non-asymptotic agent-wise convergence rates for the suboptimality of the global objective function and infeasibility of the VI constraints measured by a suitably defined dual gap function. The proposed method appears to be the first fully iterative scheme equipped with iteration complexity that can address distributed optimization problems with VI constraints over cycle graphs. Preliminary numerical experiments for a transportation network problem and a support vector machine model are presented

    Solutions of Optimization Problems on Hadamard Manifolds with Lipschitz Functions

    Get PDF
    The aims of this paper are twofold. First, it is shown, for the first time, which types of nonsmooth functions are characterized by all vector critical points as being efficient or weakly efficient solutions of vector optimization problems in constrained and unconstrained scenarios on Hadamard manifolds. This implies the need to extend different concepts, such as the Karush-Kuhn-Tucker vector critical points and generalized invexity functions, to Hadamard manifolds. The relationships between these quantities are clarified through a great number of explanatory examples. Second, we present an economic application proving that Nash's critical and equilibrium points coincide in the case of invex payoff functions. This is done on Hadamard manifolds, a particular case of noncompact Riemannian symmetric spaces
    corecore