239 research outputs found

    The scenario approach meets uncertain game theory and variational inequalities

    Get PDF
    Variational inequalities are modeling tools used to capture a variety of decision-making problems arising in mathematical optimization, operations research, game theory. The scenario approach is a set of techniques developed to tackle stochastic optimization problems, take decisions based on historical data, and quantify their risk. The overarching goal of this manuscript is to bridge these two areas of research, and thus broaden the class of problems amenable to be studied under the lens of the scenario approach. First and foremost, we provide out-of-samples feasibility guarantees for the solution of variational and quasi variational inequality problems. Second, we apply these results to two classes of uncertain games. In the first class, the uncertainty enters in the constraint sets, while in the second class the uncertainty enters in the cost functions. Finally, we exemplify the quality and relevance of our bounds through numerical simulations on a demand-response model

    Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

    Full text link
    This work examines a stochastic formulation of the generalized Nash equilibrium problem (GNEP) where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully-distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(ÎĽmax)O(\mu_\text{max}), for small step-size value ÎĽmax\mu_\text{max} and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem

    DECENTRALIZED ALGORITHMS FOR NASH EQUILIBRIUM PROBLEMS – APPLICATIONS TO MULTI-AGENT NETWORK INTERDICTION GAMES AND BEYOND

    Get PDF
    Nash equilibrium problems (NEPs) have gained popularity in recent years in the engineering community due to their ready applicability to a wide variety of practical problems ranging from communication network design to power market analysis. There are strong links between the tools used to analyze NEPs and the classical techniques of nonlinear and combinatorial optimization. However, there remain significant challenges in both the theoretical and algorithmic analysis of NEPs. This dissertation studies certain special classes of NEPs, with the overall purpose of analyzing theoretical properties such as existence and uniqueness, while at the same time proposing decentralized algorithms that provably converge to solutions. The subclasses are motivated by relevant application examples

    Penalty methods for the solution of generalized Nash equilibrium problems and hemivariational inequalities with VI constraints

    Get PDF
    In this thesis we propose penalty methods for the solution of Generalized Nash Equilibrium Problems (GNEPs) and we consider centralized and distributed algorithms for the solution of Hemivariational Inequalities (HVIs) where the feasible set is given by the intersection of a closed convex set with the solution set of a lower-level monotone Variational Inequality (VI)

    Improved guarantees for optimal Nash equilibrium seeking and bilevel variational inequalities

    Full text link
    We consider a class of hierarchical variational inequality (VI) problems that subsumes VI-constrained optimization and several other important problem classes including the optimal solution selection problem, the optimal Nash equilibrium (NE) seeking problem, and the generalized NE seeking problem. Our main contributions are threefold. (i) We consider bilevel VIs with merely monotone and Lipschitz continuous mappings and devise a single-timescale iteratively regularized extragradient method (IR-EG). We improve the existing iteration complexity results for addressing both bilevel VI and VI-constrained convex optimization problems. (ii) Under the strong monotonicity of the outer level mapping, we develop a variant of IR-EG, called R-EG, and derive significantly faster guarantees than those in (i). These results appear to be new for both bilevel VIs and VI-constrained optimization. (iii) To our knowledge, complexity guarantees for computing the optimal NE in nonconvex settings do not exist. Motivated by this lacuna, we consider VI-constrained nonconvex optimization problems and devise an inexactly-projected gradient method, called IPR-EG, where the projection onto the unknown set of equilibria is performed using R-EG with prescribed adaptive termination criterion and regularization parameters. We obtain new complexity guarantees in terms of a residual map and an infeasibility metric for computing a stationary point. We validate the theoretical findings using preliminary numerical experiments for computing the best and the worst Nash equilibria

    On the analysis of stochastic optimization and variational inequality problems

    Get PDF
    Uncertainty has a tremendous impact on decision making. The more connected we get, it seems, the more sources of uncertainty we unfold. For example, uncertainty in the parameters of price and cost functions in power, transportation, communication and financial systems have stemmed from the way these networked systems operate and also how they interact with one another. Uncertainty influences the design, regulation and decisions of participants in several engineered systems like the financial markets, electricity markets, commodity markets, wired and wireless networks, all of which are ubiquitous. This poses many interesting questions in areas of understanding uncertainty (modeling) and dealing with uncertainty (decision making). This dissertation focuses on answering a set of fundamental questions that pertain to dealing with uncertainty arising in three major problem classes: [(1)] Convex Nash games; [(2)] Variational inequality problems and complementarity problems; [(3)] Hierarchical risk management problems in financial networks. Accordingly, this dissertation considers the analysis of a broad class of stochastic optimization and variational inequality problems complicated by uncertainty and nonsmoothness of objective functions. Nash games and variational inequalities have assumed practical relevance in industry and business settings because they are natural models for many real-world applications. Nash games arise naturally in modeling a range of equilibrium problems in power markets, communication networks, market-based allocation of resources etc. where as variational inequality problems allow for modeling frictional contact problems, traffic equilibrium problems etc. Incorporating uncertainty into convex Nash games leads us to stochastic Nash games. Despite the relevance of stochastic generalizations of Nash games and variational inequalities, answering fundamental questions regarding existence of equilibria in stochastic regimes has proved to be a challenge. Amongst other reasons, the main challenge arises from the nonlinearity arising from the presence of the expectation operator. Despite the rich literature in deterministic settings, direct application of deterministic results to stochastic regimes is not straightforward. The first part of this dissertation explores such fundamental questions in stochastic Nash games and variational inequality problems. Instead of directly using the deterministic results, by leveraging Lebesgue convergence theorems we are able to develop a tractable framework for analyzing problems in stochastic regimes over a continuous probability space. The benefit of this approach is that the framework does not rely on evaluation of the expectation operator to provide existence guarantees, thus making it amenable to tractable use. We extend the above framework to incorporate nonsmoothness of payoff functions as well as allow for stochastic constraints in models, all of which are important in practical settings. The second part of this dissertation extends the above framework to generalizations of variational inequality problems and complementarity problems. In particular, we develop a set of almost-sure sufficiency conditions for stochastic variational inequality problems with single-valued and multi-valued mappings. We extend these statements to quasi-variational regimes as well as to stochastic complementarity problems. The applicability of these results is demonstrated in analysis of risk-averse stochastic Nash games used in Nash-Cournot production distribution models in power markets by recasting the problem as a stochastic quasi-variational inequality problem and in Nash-Cournot games with piecewise smooth price functions by modeling this problem as a stochastic complementarity problem. The third part of this dissertation pertains to hierarchical problems in financial risk management. In the financial industry, risk has been traditionally managed by the imposition of value-at-risk or VaR constraints on portfolio risk exposure. Motivated by recent events in the financial industry, we examine the role that risk-seeking traders play in the accumulation of large and possibly infinite risk. We proceed to show that when traders employ a conditional value-at-risk (CVaR) metric, much can be said by studying the interaction between value at risk (VaR) (a non-coherent risk measure) and conditional value at risk CVaR (a coherent risk measure based on VaR). Resolving this question requires characterizing the optimal value of the associated stochastic, and possibly nonconvex, optimization problem, often a challenging problem. Our study makes two sets of contributions. First, under general asset distributions on a compact support, traders accumulate finite risk with magnitude of the order of the upper bound of this support. Second, when the supports are unbounded, under relatively mild assumptions, such traders can take on an unbounded amount of risk despite abiding by this VaR threshold. In short, VaR thresholds may be inadequate in guarding against financial ruin
    • …
    corecore